maternal uniparental disomy
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 54)

H-INDEX

31
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jiaxiong Wang ◽  
Ce Zhang ◽  
Hui Tang ◽  
Aiyan Zheng ◽  
Hong Li ◽  
...  

Asthenospermia is one of the most important causes of male infertility. Among asthenospermia, multiple morphological abnormalities of sperm flagella (MMAF) are relatively rare idiopathic conditions characterized by multiple defects in sperm flagella. Although many studies focusing on the genetic factors of MMAF have been conducted, its pathogenesis and treatment effect remain largely unknown. Here, we report a male patient from a nonconsanguineous Chinese family who exhibited a typical MMAF phenotype revealed by morphological analysis. We identified splicing mutations in CFAP251 (c.1192-3C>G), and the mutation was proven to cause exon skipping. In addition, western blotting and immunofluorescence analysis of the spermatozoa from the proband and a control subject revealed a significantly lower expression of CFAP251 protein due to pathogenic mutation. Interestingly, the patient’s mother was a heterozygous carrier for the mutation, but his father was not, and finally, the inheritance pattern was proven to be maternal uniparental disomy. We applied an intracytoplasmic sperm injection and achieved a successful pregnancy. Above all, our findings expand the spectrum of CFAP251 pathogenic mutations and provide more indications for clinical genetic counseling and assisted reproductive treatment for such patients.


2021 ◽  
Vol 11 (11) ◽  
pp. 1197
Author(s):  
Hsiang-Yu Lin ◽  
Chung-Lin Lee ◽  
Sisca Fran ◽  
Ru-Yi Tu ◽  
Ya-Hui Chang ◽  
...  

Background: Silver–Russell syndrome (SRS) is a clinically and genetically heterogeneous disorder characterized by severe intrauterine growth retardation, poor postnatal growth, characteristic facial features, and body asymmetry. Hypomethylation of the imprinted genes of the chromosome 11p15.5 imprinting gene cluster and maternal uniparental disomy of chromosome 7 (mUPD7) are the major epigenetic disturbances. The aim of this study was to characterize the epigenotype, genotype, and phenotype of these patients in Taiwan. Methods: Two hundred and six subjects with clinically suspected SRS were referred for diagnostic testing, which was performed by profiling the methylation of H19-associated imprinting center (IC) 1 and the imprinted PEG1/MEST region using methylation-specific multiplex ligation-dependent probe amplification and high-resolution melting analysis with a methylation-specific polymerase chain reaction assay. We also applied a whole genome strategy to detect copy number changes and loss of heterozygosity. Clinical manifestations were recorded and analyzed according to the SRS scoring system proposed by Bartholdi et al. Results: Among the 206 referred subjects, 100 were classified as having a clinical diagnosis of SRS (score ≥ 8, maximum = 15) and 106 had an SRS score ≤ 7. Molecular lesions were detected in 45% (45/100) of the subjects with a clinical diagnosis of SRS, compared to 5% (5/106) of those with an SRS score ≤ 7. Thirty-seven subjects had IC1 hypomethylation, ten subjects had mUPD7, and three subjects had microdeletions. Several clinical features were found to be statistically different (p < 0.05) between the “IC1 hypomethylation” and “mUPD7” groups, including relative macrocephaly at birth (89% vs. 50%), triangular shaped face (89% vs. 50%), clinodactyly of the fifth finger (68% vs. 20%), and SRS score (11.4 ± 2.2 vs. 8.3 ± 2.5). Conclusions: The SRS score was positively correlated with the molecular diagnosis rate (p < 0.001). The SRS subjects with mUPD7 seemed to have fewer typical features and lower SRS scores than those with IC1 hypomethylation. Careful clinical observation and timely molecular confirmation are important to allow for an early diagnosis and multidisciplinary management of these patients.


2021 ◽  
Vol 14 ◽  
Author(s):  
A. Kaitlyn Victor ◽  
Martin Donaldson ◽  
Daniel Johnson ◽  
Winston Miller ◽  
Lawrence T. Reiter

Background: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hormonal dysregulation, obesity, intellectual disability, and behavioral problems. Most PWS cases are caused by paternal interstitial deletions of 15q11.2-q13.1, while a smaller number of cases are caused by chromosome 15 maternal uniparental disomy (PW-UPD). Children with PW-UPD are at higher risk for developing autism spectrum disorder (ASD) than the neurotypical population. In this study, we used expression analysis of PW-UPD neurons to try to identify the molecular cause for increased autism risk.Methods: Dental pulp stem cells (DPSC) from neurotypical control and PWS subjects were differentiated to neurons for mRNA sequencing. Significantly differentially expressed transcripts among all groups were identified. Downstream protein analysis including immunocytochemistry and immunoblots were performed to confirm the transcript level data and pathway enrichment findings.Results: We identified 9 transcripts outside of the PWS critical region (15q11.2-q13.1) that may contribute to core PWS phenotypes. Moreover, we discovered a global reduction in mitochondrial transcripts in the PW-UPD + ASD group. We also found decreased mitochondrial abundance along with mitochondrial aggregates in the cell body and neural projections of +ASD neurons.Conclusion: The 9 transcripts we identified common to all PWS subtypes may reveal PWS specific defects during neurodevelopment. Importantly, we found a global reduction in mitochondrial transcripts in PW-UPD + ASD neurons versus control and other PWS subtypes. We then confirmed mitochondrial defects in neurons from individuals with PWS at the cellular level. Quantification of this phenotype supports our hypothesis that the increased incidence of ASD in PW-UPD subjects may arise from mitochondrial defects in developing neurons.


2021 ◽  
pp. 1-9
Author(s):  
Emre Özer ◽  
Filiz Geyik ◽  
Zeynep Alp Ünkar ◽  
Oya Ercan ◽  
Beyhan Tüysüz

Loss of methylation (LoM) of the imprinting control region 1 (ICR1) in the chromosome 11p15.5 domain is detected in patients with Silver-Russell syndrome (SRS), characterized by asymmetric pre- and postnatal growth restriction, and typical craniofacial features. The patients with intrauterine growth restriction (IUGR) possess a high risk for adult metabolic problems. This study is aimed to investigate the methylation levels of the chromosome 11p15.5 region and metabolic problems in children with syndromic and nonsyndromic IUGR. Methylation analysis was performed for chromosome 11p15.5 in 49 patients (33 with suspected SRS and 16 nonsyndromic IUGR) with Netchine-Harbison clinical scoring (NHCS); uniparental disomy for chromosomes 6, 7, 14, and 20 was evaluated for those who were negative. LoM of ICR1 was detected in 14 of 33 suspected SRS patients with 3 or more criteria of NHCS, 5 had borderline LoM. Maternal uniparental disomy of the chromosomes 7 and 14 was found in 2 patients. The overall detection rate of SRS was 45.5%. While clinical findings were similar in patients with LoM and borderline LoM of ICR1, typical craniofacial findings were significantly less in the patients with normal methylation. Methylation patterns were not found to be impaired in the nonsyndromic IUGR group. Metabolic complications were evaluated in a total of 63 patients including 33 SRS-suspicious, 16 nonsyndromic IUGR, and 14 patients with 3M or SHORT syndrome. Increased rates of hypercalciuria, insulin resistance, and dyslipidemia were detected in patients with both syndromic and nonsyndromic IUGR. We would like to emphasize that detecting typical facial findings is effective in the diagnosis of SRS and paying attention to metabolic problems in the follow-up of patients with IUGR is recommended.


2021 ◽  
Author(s):  
Yang-Li Dai ◽  
Ke Huang ◽  
Ming-Qiang Zhu ◽  
Mian-Ling Zhong ◽  
Guan-Ping Dong ◽  
...  

Abstract BackgroundPrader-Willi syndrome (PWS) is a rare neurodevelopmental disorder that is partially caused by maternal uniparental disomy (UPD) of chromosome 15. Copy-neutral loss of heterozygosity (CN-LOH) observed on the distal long arm of chromosome 15 may be an indicator of UPD and may require additional genetic testing as chromosome 15 is known to harbor imprinted genes.MethodsChromosome microarray (CMA) was performed for two children with developmental disabilities or congenital anomalies. The results showed CN-LOH on the distal long arm of chromosome 15. Thereafter, methylation-specific PCR (MS-PCR) or methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to confirm the diagnosis of PWS.ResultsMS-PCR did not detect an unmethylated allele for the SNRPN gene or MS-MLPA hypermethylation in 15q11.2-q13.1 region, supporting the diagnosis of PWS.ConclusionsThese data suggested that LOH on chromosome 15, and even the critical region of 15q11.2q13.1 was not involved, perhaps due to partial heterodisomy and partial isodisomy UPD15. Hence, other genetic tests are warranted for the diagnosis of PWS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenjie Chen ◽  
Fei Chen ◽  
Yiping Shen ◽  
Zhixian Yang ◽  
Jiong Qin

Background: Contactin 2, encoded by CNTN2 on chromosome 1q32.1, is a neural-specific glycoprotein and plays important roles in neurodevelopment. A deleterious homozygous variant in the CNTN2 gene was previously reported to cause autosomal recessive cortical myoclonic tremor and epilepsy. Since then, there has been no further report confirming the association of CNTN2 and epilepsy. Here, we reported one new case, who presented with epilepsy, carrying a novel homozygous frameshift variant in CNTN2. The clinical and genetic features of the patient were reviewed.Case presentation: The male patient presented with preschool age-of-onset neurodevelopmental impairment and focal seizures of temporal origin, and responded to valproate. A trio-whole exome sequencing revealed a novel homozygous frameshift variant in CNTN2 (c.2873_c.2874delCT, p.Thr958Thrfs). The patient’s mother was a heterozygous carrier while his father was wild-type; they were both unaffected and non-consanguineous. Further study revealed that maternal uniparental disomy (1q32.1) unmasked the heterozygous variant of CNTN2 in the proband.Conclusions: This case enhanced the gene–disease relationship between CNTN2 and epilepsy, which will help to further understand this emerging disorder.


2021 ◽  
Author(s):  
Alicia F Juriaans ◽  
Gerthe F Kerkhof ◽  
Anita C S Hokken-Koelega

Abstract Prader-Willi syndrome (PWS) is a rare genetic syndrome, caused by the loss of expression of the paternal chromosome 15q11-q13 region. Over the past years, many cases of patients with characteristics similar to PWS, but without a typical genetic aberration of the 15q11-q13 region, have been described. These patients are often labelled as Prader-Willi-like (PWL). PWL is an as-yet poorly defined syndrome, potentially affecting a significant number of children and adults. In the current clinical practice, patients labelled as PWL are mostly left without treatment options. Considering the similarities with PWS, children with PWL might benefit from the same care and treatment as children with PWS. This review gives more insight into the pheno- and genotype of PWL and includes 86 papers, containing 368 cases of patients with a PWL phenotype. We describe mutations and aberrations for consideration when suspicion of PWS remains after negative testing. The most common genetic diagnoses were Temple syndrome (formerly known as maternal uniparental disomy 14), Schaaf-Yang syndrome (truncating mutation in the MAGEL2 gene), 1p36 deletion, 2p deletion, 6q deletion, 6q duplication, 15q deletion,15q duplication, 19p deletion, fragile X syndrome and Xq duplication. We found that the most prevalent symptoms in the entire group were developmental delay/intellectual disability (76%), speech problems (64%), overweight/obesity (57%), hypotonia (56%) and psycho-behavioral problems (53%).In addition, we propose a diagnostic approach to patients with a PWL phenotype for (pediatric) endocrinologists. PWL comprises a complex and diverse group of patients, which calls for multidisciplinary care with an individualized approach.


2021 ◽  
Vol 10 (16) ◽  
pp. 3613
Author(s):  
Anna Sjöström ◽  
Karlijn Pellikaan ◽  
Henrik Sjöström ◽  
Anthony P. Goldstone ◽  
Graziano Grugni ◽  
...  

Prader-Willi syndrome (PWS) is a rare neurodevelopmental genetic disorder typically characterized by body composition abnormalities, hyperphagia, behavioural challenges, cognitive dysfunction, and hypogonadism. Psychotic illness is common, particularly in patients with maternal uniparental disomy (mUPD), and antipsychotic medications can result in hyperprolactinemia. Information about hyperprolactinemia and its potential clinical consequences in PWS is sparse. Here, we present data from an international, observational study of 45 adults with PWS and hyperprolactinemia. Estimated prevalence of hyperprolactinemia in a subset of centres with available data was 22%, with 66% of those related to medication and 55% due to antipsychotics. Thirty-three patients were men, 12 women. Median age was 29 years, median BMI 29.8 kg/m2, 13 had mUPD. Median prolactin was 680 mIU/L (range 329–5702). Prolactin levels were higher in women and patients with mUPD, with only 3 patients having severe hyperprolactinemia. Thyroid function tests were normal, 24 were treated with growth hormone, 29 with sex steroids, and 20 with antipsychotic medications. One patient had kidney insufficiency, and one a microprolactinoma. In conclusion, severe hyperprolactinemia was rare, and the most common aetiology of hyperprolactinemia was treatment with antipsychotic medications. Although significant clinical consequences could not be determined, potential negative long-term effects of moderate or severe hyperprolactinemia cannot be excluded. Our results suggest including measurements of prolactin in the follow-up of adults with PWS, especially in those on treatment with antipsychotics.


2021 ◽  
Author(s):  
Anna Kaitlyn Victor ◽  
Martin Donaldson ◽  
Daniel Johnson ◽  
Winston Miller ◽  
Lawrence Reiter

Background: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hormonal dysregulation, obesity, intellectual disability, and behavioral problems. Most PWS cases are caused by paternal interstitial deletions of 15q11.2-q13.1, while a smaller number of cases are caused by chromosome 15 maternal uniparental disomy (PW-UPD). Children with PW-UPD are at higher risk for developing autism spectrum disorder (ASD) than the neurotypical population. In this study, we used expression analysis of PW-UPD neurons to try to identify the molecular cause for increased autism risk. Methods: Dental pulp stem cells (DPSC) from neurotypical control and PWS subjects were differentiated to neurons for mRNA sequencing. Significantly differentially expressed transcripts among all groups were identified. Downstream protein analysis including immunocytochemistry and immunoblots were performed to confirm the transcript level data and pathway enrichment findings. Results: We identified 9 transcripts outside of the PWS critical region (15q11.2-q13.1) that may contribute to core PWS phenotypes. Moreover, we discovered a global reduction in mitochondrial transcripts in the PW-UPD +ASD group. We also found decreased mitochondrial abundance along with mitochondrial aggregates in the cell body and neural projections of +ASD neurons. Conclusions: The 9 transcripts we identified common to all PWS subtypes may reveal PWS specific defects during neurodevelopment. Importantly, we found a global reduction in mitochondrial transcripts in PW-UPD +ASD neurons versus control and other PWS subtypes. We then confirmed mitochondrial defects in neurons from individuals with PWS at the cellular level. Quantification of this phenotype supports our hypothesis that the increased incidence of ASD in PW-UPD subjects may arise from mitochondrial defects in developing neurons.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quixia Cui ◽  
Cagri Aksu ◽  
Birol Ay ◽  
Claire E. Remillard ◽  
Antonius Plagge ◽  
...  

GNAS encodes the stimulatory G protein alpha-subunit (Gsα) and its large variant XLαs. Studies have suggested that XLαs is expressed exclusively paternally. Thus, XLαs deficiency is considered to be responsible for certain findings in patients with paternal GNAS mutations, such as pseudo-pseudohypoparathyroidism, and the phenotypes associated with maternal uniparental disomy of chromosome 20, which comprises GNAS. However, a study of bone marrow stromal cells (BMSC) suggested that XLαs could be biallelically expressed. Aberrant BMSC differentiation due to constitutively activating GNAS mutations affecting both Gsα and XLαs is the underlying pathology in fibrous dysplasia of bone. To investigate allelic XLαs expression, we employed next-generation sequencing and a polymorphism common to XLαs and Gsα, as well as A/B, another paternally expressed GNAS transcript. In mouse BMSCs, Gsα transcripts were 48.4 ± 0.3% paternal, while A/B was 99.8 ± 0.2% paternal. In contrast, XLαs expression varied among different samples, paternal contribution ranging from 43.0 to 99.9%. Sample-to-sample variation in paternal XLαs expression was also detected in bone (83.7–99.6%) and cerebellum (83.8 to 100%) but not in cultured calvarial osteoblasts (99.1 ± 0.1%). Osteoblastic differentiation of BMSCs shifted the paternal XLαs expression from 83.9 ± 1.5% at baseline to 97.2 ± 1.1%. In two human BMSC samples grown under osteoinductive conditions, XLαs expression was also predominantly monoallelic (91.3 or 99.6%). Thus, the maternal GNAS contributes significantly to XLαs expression in BMSCs but not osteoblasts. Altered XLαs activity may thus occur in certain cell types irrespective of the parental origin of a GNAS defect.


Sign in / Sign up

Export Citation Format

Share Document