Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells

2006 ◽  
Vol 207 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Tanmay P. Lele ◽  
Jay Pendse ◽  
Sanjay Kumar ◽  
Matthew Salanga ◽  
John Karavitis ◽  
...  
2014 ◽  
Vol 306 (6) ◽  
pp. C607-C620 ◽  
Author(s):  
Hiroaki Hirata ◽  
Hitoshi Tatsumi ◽  
Chwee Teck Lim ◽  
Masahiro Sokabe

Mechanical forces play a pivotal role in the regulation of focal adhesions (FAs) where the actin cytoskeleton is anchored to the extracellular matrix through integrin and a variety of linker proteins including talin and vinculin. The localization of vinculin at FAs depends on mechanical forces. While in vitro studies have demonstrated the force-induced increase in vinculin binding to talin, it remains unclear whether such a mechanism exists at FAs in vivo. In this study, using fibroblasts cultured on elastic silicone substrata, we have examined the role of forces in modulating talin-vinculin binding at FAs. Stretching the substrata caused vinculin accumulation at talin-containing FAs, and this accumulation was abrogated by expressing the talin-binding domain of vinculin (domain D1, which inhibits endogenous vinculin from binding to talin). These results indicate that mechanical forces loaded to FAs facilitate vinculin binding to talin at FAs. In cell-protruding regions, the actin network moved backward over talin-containing FAs in domain D1-expressing cells while it was anchored to FAs in control cells, suggesting that the force-dependent vinculin binding to talin is crucial for anchoring the actin cytoskeleton to FAs in living cells.


Author(s):  
S. Suresh ◽  
C. T. Lim ◽  
M. Dao

The chemical and biological functions of living cells are known to be influenced strongly by mechanical forces and deformation, and the ability of cells to detect and support forces, in turn, is also affected by chemical and biological factors. Furthermore, the progression of a number of inherited and infectious diseases have also been identified to have a strong correlation with the mechanical deformation characteristics of biological cells. Consequently, the deformation characteristics of whole cells and cell membranes have long been investigated using a variety of experimental methods, such as the micropipette aspiration technique, and by computational modeling (see, for example, refs. [1, 2]). Recent advances in experimental techniques capable of probing mechanical forces and displacements to a resolution of picoNewton and nanometer, respectively, have facilitated use of mechanical test methods for living cells whereby precise measurements of response under different stress states could be investigated.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Shaoying Lu ◽  
Jihye Seong ◽  
Yi Wang ◽  
Shiou-chi Chang ◽  
John Paul Eichorst ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 12a
Author(s):  
Navid Bonakdar ◽  
Achim Schilling ◽  
Claus Metzner ◽  
Ben Fabry

2006 ◽  
Vol 173 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Reinhard Windoffer ◽  
Anne Kölsch ◽  
Stefan Wöll ◽  
Rudolf E. Leube

Recent studies showed that keratin filament (KF) formation originates primarily from sites close to the actin-rich cell cortex. To further characterize these sites, we performed multicolor fluorescence imaging of living cells and found drastically increased KF assembly in regions of elevated actin turnover, i.e., in lamellipodia. Abundant KF precursors (KFPs) appeared within these areas at the distal tips of actin stress fibers, moving alongside the stress fibers until their integration into the peripheral KF network. The earliest KFPs were detected next to actin-anchoring focal adhesions (FAs) and were only seen after the establishment of FAs in emerging lamellipodia. Tight spatiotemporal coupling of FAs and KFP formation were not restricted to epithelial cells, but also occurred in nonepithelial cells and cells producing mutant keratins. Finally, interference with FA formation by talin short hairpin RNA led to KFP depletion. Collectively, our results support a major regulatory function of FAs for KF assembly, thereby providing the basis for coordinated shaping of the entire cytoskeleton during cell relocation and rearrangement.


2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 445-445
Author(s):  
James W. Frank ◽  
Xilong Li ◽  
David W. Erikson ◽  
Guoyao Wu ◽  
Fuller W. Bazer ◽  
...  

2020 ◽  
Vol 133 (20) ◽  
pp. jcs248823 ◽  
Author(s):  
Ratnakar Potla ◽  
Mariko Hirano-Kobayashi ◽  
Hao Wu ◽  
Hong Chen ◽  
Akiko Mammoto ◽  
...  

ABSTRACTOne of the most rapid (less than 4 ms) transmembrane cellular mechanotransduction events involves activation of transient receptor potential vanilloid 4 (TRPV4) ion channels by mechanical forces transmitted across cell surface β1 integrin receptors on endothelial cells, and the transmembrane solute carrier family 3 member 2 (herein denoted CD98hc, also known as SLC3A2) protein has been implicated in this response. Here, we show that β1 integrin, CD98hc and TRPV4 all tightly associate and colocalize in focal adhesions where mechanochemical conversion takes place. CD98hc knockdown inhibits TRPV4-mediated calcium influx induced by mechanical forces, but not by chemical activators, thus confirming the mechanospecificity of this signaling response. Molecular analysis reveals that forces applied to β1 integrin must be transmitted from its cytoplasmic C terminus via the CD98hc cytoplasmic tail to the ankyrin repeat domain of TRPV4 in order to produce ultrarapid, force-induced channel activation within the focal adhesion.


2006 ◽  
Author(s):  
Brigitte Angres ◽  
Heiko Steuer ◽  
Michael Wagner ◽  
Petra Weber ◽  
Herbert Schneckenburger

Soft Matter ◽  
2022 ◽  
Author(s):  
Dimitrije Stamenović ◽  
Michael L. Smith

In this Reply to the Comment, we discuss data from the literature which show that the idea that tensional homeostasis in focal adhesions (FAs) of living cells exists over “a central range of FAs”, which is promulgated in the Comment, is not tenable.


Sign in / Sign up

Export Citation Format

Share Document