Investigation of the specific interfacial area of a palm oil–water system

2004 ◽  
Vol 79 (7) ◽  
pp. 706-710 ◽  
Author(s):  
Sulaiman Al-Zuhair ◽  
Kadathur B Ramachandran ◽  
Masitah Hasan

Bubble sizes in bubble column affect the bubble induced mixing of phases, interfacial area and transfer processes. Acoustic technique is used to measure bubble size distribution in a rectangular bubble column of cross section 0.2m x 0.02m for air sparged into water and aqueous solutions of ethylene glycol. Five condenser mikes at intermediate distance of 0.05 m measured above the distributor plate were used to find out the variation of bubble size as the bubbles move up. Sauter-mean bubble diameter and specific interfacial area were estimated from bubble size distribution at several superficial air velocity, static bed height, distance above the distributor plate and ethylene glycol concentration. The BSD exhibited mono-modal distribution and indicated non-uniform homogeneous bubbling regime. Sauter-mean bubble diameter is independent of superficial gas velocity, static bed height and concentration of EG, although, the values were higher than that for air-water system. Sauter-mean bubble diameter decreases as the bubbles move up indicating bubble breakup to take place once the bubbles leave the sparger. The value of interfacial area increases as the static bed height decreases and distance above the distributor plate increases. For air-ethylene glycol solution the values of specific interfacial area are about 200% higher than that observed in case of air-water system. The acoustic technique may be used to measure local values of bubble sizes and specific interfacial area.


2018 ◽  
Vol 108 ◽  
pp. 372-381
Author(s):  
Wirachai Chonwattana ◽  
Chanin Panjapornpon ◽  
Atthasit Tawai ◽  
Tanawadee Dechakupt

2021 ◽  
pp. 105501
Author(s):  
W.H. Wu ◽  
D.G. Eskin ◽  
A. Priyadarshi ◽  
T. Subroto ◽  
I. Tzanakis ◽  
...  

1997 ◽  
Vol 128 (1-3) ◽  
pp. 217-224 ◽  
Author(s):  
Y. Hodate ◽  
S. Ueno ◽  
J. Yano ◽  
T. Katsuragi ◽  
Y. Tezuka ◽  
...  

1960 ◽  
Vol 26 (12) ◽  
pp. 1167-1170
Author(s):  
Tuneo IKEUTI ◽  
Wataru SIMIDU
Keyword(s):  

Author(s):  
Jennifer Niessner ◽  
S. Majid Hassanizadeh ◽  
Dustin Crandall

We present a new numerical model for macro-scale two-phase flow in porous media which is based on a physically consistent theory of multi-phase flow. The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid–fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study.


2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


Sign in / Sign up

Export Citation Format

Share Document