The induced plasma torch as a high-temperature chemical reactor. I. Oxidation of silicon tetrachloride

2007 ◽  
Vol 19 (2) ◽  
pp. 33-38 ◽  
Author(s):  
A. Audsley ◽  
R. K. Bayliss
2014 ◽  
Vol 32 ◽  
pp. 1460345
Author(s):  
Vishal Jain ◽  
A. Visani ◽  
C. Patil ◽  
B. K. Patel ◽  
P. K. Sharma ◽  
...  

Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.


Author(s):  
Yu. S. Pogozhev ◽  
A. Yu. Potanin ◽  
S. I. Rupasov ◽  
E. A. Levashov ◽  
V. A. Volkova ◽  
...  

The paper focuses on obtaining a heterophase powdered and sintered ceramics based on hafnium diboride and silicon carbide by combined self-propagating high-temperature synthesis (SHS) and hot pressing (HP). The structure of the synthesized SHS powder consists of hafnium diboride grains and agglomerated polyhedral 2–6 μm silicon carbide grains. The powders obtained had an average particle size of ~10 μm with a maximum value of 30 μm. Phase compositions were identical for the ceramics sintered by hot pressing and the synthesized powder. The resulting compact featured by a high degree of structural and chemical uniformity, porosity of 3.8 %, hardness of 19.8±0.4 GPa, strength of 597±59 MPa, and fracture toughness of 8.8±0.4 MPa·m1/2. Plasma torch testing (PTT) was carried out to determine the oxidation resistance under the influence of a high-enthalpy gas flow. The phase composition and surface microstructure of the compact after testing were investigated. The HP compact demonstrated an outstanding resistance to the high-temperature gas flow at 2150 °С and heat flow density of 5.6 MW/m2 for 300 s. A dense protective oxide layer 30–40 μm thick was formed on the surface of HfB2–SiC ceramics during the plasma torch testing. The layer consisted of a scaffold formed by HfO2 oxide grains with a space between them filled with SiO2–B2O3 amorphous borosilicate glass. The HfB2–SiC SHS composite powder was hot pressed to produce experimental samples of model bushings for the combustion chamber of a low thrust liquid rocket engine designed for PTT in the environment close to actual operating conditions.


Author(s):  
Alice Fourcault ◽  
Fre´de´ric Marias ◽  
Ulysse Michon

Biomass is one of the most important sources of renewable energy. One aim of Biomass gasification is to convert a solid feedstock into a valuable syngas for electricity or liquid fuel production. Actual industrial auto-thermal gasification processes achieve a production of syngas mainly polluted by products such as dust, nitrogen oxides, sulfur dioxide and tars. Tars remain, one of the main drawbacks in using the gasification process since they are capable of condensing at low temperature. This could lead to fouling, corrosion, attrition and abrasion of downstream devices such as gas turbines or engines. Tars are often removed from the syngas, decreasing the internal energy of the syngas itself. These tars are heavy aromatic hydrocarbons whose treatment remains difficult by thermal, catalytic or even physical methods. They can condense or polymerize into more complex structures, and the mechanisms responsible for their degradation are not completely identified and understood. Turboplasma© is a thermal process, proposed by Europlasma. The main principle of operation relies on the use of thermal plasma for the cracking of tars inside a syngas produced in an auto-thermal gasification step. Basically, it consists of a degradation chamber where the syngas is heated by a plasma torch. The plasma plume provides a high temperature gas (around 5000K) to the system and enables heating of the incoming stream (above 1300K) and also generates high temperature zones (above 1600 K) inside the device. Due to both high temperature and long residence times of the syngas in the vessel, cracking of the tars occurs. Finally, the species released are mainly CO and H2, leading to an increase in the Lower Heating Value of the syngas. The work presented here describes the design of a high temperature gasification system assisted by thermal plasma. It was performed using a CFD computation implemented with a full chemical model for the thermal degradation of tars. The objectives were to understand the aerodynamic behavior of the vessel and to propose enhancement in its design. We present here some results of this study.


2020 ◽  
Vol 98 (1) ◽  
pp. 3-9
Author(s):  
Michihisa Fukumoto ◽  
Kano Nakajima ◽  
Yasumasa Kawamori

Sign in / Sign up

Export Citation Format

Share Document