Circular choosability via combinatorial Nullstellensatz

2008 ◽  
Vol 59 (3) ◽  
pp. 190-204 ◽  
Author(s):  
Serguei Norine ◽  
Tsai-Lien Wong ◽  
Xuding Zhu
2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Frédéric Havet ◽  
Andrew King

Graph Theory International audience A natural generalization of graph colouring involves taking colours from a metric space and insisting that the endpoints of an edge receive colours separated by a minimum distance dictated by properties of the edge. In the q-backbone colouring problem, these minimum distances are either q or 1, depending on whether or not the edge is in the backbone. In this paper we consider the list version of this problem, with particular focus on colours in ℤp - this problem is closely related to the problem of circular choosability. We first prove that the list circular q-backbone chromatic number of a graph is bounded by a function of the list chromatic number. We then consider the more general problem in which each edge is assigned an individual distance between its endpoints, and provide bounds using the Combinatorial Nullstellensatz. Through this result and through structural approaches, we achieve good bounds when both the graph and the backbone belong to restricted families of graphs.


2014 ◽  
Vol Vol. 16 no. 1 ◽  
Author(s):  
Frederic Havet ◽  
Andrew D. King

International audience A natural generalization of graph colouring involves taking colours from a metric space and insisting that the endpoints of an edge receive colours separated by a minimum distance dictated by properties of the edge. In the q-backbone colouring problem, these minimum distances are either q or 1, depending on whether or not the edge is in the backbone. In this paper we consider the list version of this problem, with particular focus on colours in ℤp - this problem is closely related to the problem of circular choosability. We first prove that the list circular q-backbone chromatic number of a graph is bounded by a function of the list chromatic number. We then consider the more general problem in which each edge is assigned an individual distance between its endpoints, and provide bounds using the Combinatorial Nullstellensatz. Through this result and through structural approaches, we achieve good bounds when both the graph and the backbone belong to restricted families of graphs.


Author(s):  
NGUYEN CONG MINH ◽  
LUU BA THANG ◽  
TRAN NAM TRUNG

Abstract Let I be a zero-dimensional ideal in the polynomial ring $K[x_1,\ldots ,x_n]$ over a field K. We give a bound for the number of roots of I in $K^n$ counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.


10.37236/4124 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
László Varga

We present new generalizations of Olson's theorem and of a consequence of Alon's Combinatorial Nullstellensatz. These enable us to extend some of their combinatorial applications with conditions modulo primes to conditions modulo prime powers. We analyze computational search problems corresponding to these kinds of combinatorial questions and we prove that the problem of finding degree-constrained subgraphs modulo $2^d$ such as $2^d$-divisible subgraphs and the search problem corresponding to the Combinatorial Nullstellensatz over $\mathbb{F}_2$ belong to the complexity class Polynomial Parity Argument (PPA).


10.37236/734 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Uwe Schauz

The main result of this paper is a coefficient formula that sharpens and generalizes Alon and Tarsi's Combinatorial Nullstellensatz. On its own, it is a result about polynomials, providing some information about the polynomial map $P|_{\mathfrak{X}_1\times\cdots\times\mathfrak{X}_n}$ when only incomplete information about the polynomial $P(X_1,\dots,X_n)$ is given.In a very general working frame, the grid points $x\in \mathfrak{X}_1\times\cdots\times\mathfrak{X}_n$ which do not vanish under an algebraic solution – a certain describing polynomial $P(X_1,\dots,X_n)$ – correspond to the explicit solutions of a problem. As a consequence of the coefficient formula, we prove that the existence of an algebraic solution is equivalent to the existence of a nontrivial solution to a problem. By a problem, we mean everything that "owns" both, a set ${\cal S}$, which may be called the set of solutions; and a subset ${\cal S}_{\rm triv}\subseteq{\cal S}$, the set of trivial solutions.We give several examples of how to find algebraic solutions, and how to apply our coefficient formula. These examples are mainly from graph theory and combinatorial number theory, but we also prove several versions of Chevalley and Warning's Theorem, including a generalization of Olson's Theorem, as examples and useful corollaries.We obtain a permanent formula by applying our coefficient formula to the matrix polynomial, which is a generalization of the graph polynomial. This formula is an integrative generalization and sharpening of:1. Ryser's permanent formula.2. Alon's Permanent Lemma.3. Alon and Tarsi's Theorem about orientations and colorings of graphs.Furthermore, in combination with the Vigneron-Ellingham-Goddyn property of planar $n$-regular graphs, the formula contains as very special cases:4. Scheim's formula for the number of edge $n$-colorings of such graphs.5. Ellingham and Goddyn's partial answer to the list coloring conjecture.


2018 ◽  
Vol 28 (2) ◽  
pp. 253-279
Author(s):  
O. GEIL ◽  
U. MARTÍNEZ-PEÑAS

We upper-bound the number of common zeros over a finite grid of multivariate polynomials and an arbitrary finite collection of their consecutive Hasse derivatives (in a coordinate-wise sense). To that end, we make use of the tool from Gröbner basis theory known as footprint. Then we establish and prove extensions in this context of a family of well-known results in algebra and combinatorics. These include Alon's combinatorial Nullstellensatz [1], existence and uniqueness of Hermite interpolating polynomials over a grid, estimations of the parameters of evaluation codes with consecutive derivatives [20], and bounds on the number of zeros of a polynomial by DeMillo and Lipton [8], Schwartz [25], Zippel [26, 27] and Alon and Füredi [2]. As an alternative, we also extend the Schwartz-Zippel bound to weighted multiplicities and discuss its connection to our extension of the footprint bound.


2005 ◽  
Vol 48 (3) ◽  
pp. 210-218 ◽  
Author(s):  
Xuding Zhu

10.37236/4084 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Uwe Schauz

We prove that the list-chromatic index and paintability index of $K_{p+1}$ is $p$, for all odd primes $p$. This implies that the List Edge Coloring Conjecture holds for complete graphs with less then 10 vertices. It also shows that there are arbitrarily big complete graphs for which the conjecture holds, even among the complete graphs of class 1. Our proof combines the Quantitative Combinatorial Nullstellensatz with the Paintability Nullstellensatz and a group action on symmetric Latin squares. It displays various ways of using different Nullstellensätze. We also obtain a partial proof of a version of Alon and Tarsi's Conjecture about even and odd Latin squares.


2021 ◽  
pp. 7-16
Author(s):  
Xuding Zhu ◽  
R. Balakrishnan

Sign in / Sign up

Export Citation Format

Share Document