Prediction of experimental parameters in combined isocratic and gradient elution reversed phase high performance liquid chromatography (RP-HPLC) using acetonitrile as organic modifier

1981 ◽  
Vol 4 (6) ◽  
pp. 276-279 ◽  
Author(s):  
I. Molnar
1985 ◽  
Vol 65 (2) ◽  
pp. 285-298 ◽  
Author(s):  
J. E. KRUGER ◽  
B. A. MARCHYLO

Chromatographic conditions were optimized and three commercially available columns were evaluated for separation of alcohol-soluble storage proteins of Neepawa wheat using reversed-phase high-performance liquid chromatography (RP-HPLC). Optimal separation was achieved using an extracting solution of 50% 1-propanol, 1% acetic acid, and 4% dithiothreitol and an HPLC elution time of 105 min at a flow rate of 1.0 mL/min. HPLC columns evaluated (SynChropak RP-P, Ultrapore RPSC and Aquapore RP-300) varied in selectivity and resolution. The column providing the greatest versatility was Aquapore RP-300 available in cartridge form. Sodium dodecyl sulfate gradient-gel electrophoresis analysis of protein peaks resolved by RP-HPLC indicated that many of the eluted peaks contained more than one protein species. Chromatographic protein patterns obtained for Neepawa wheat grown at different locations and in different years were qualitatively the same.Key words: Protein, high-performance liquid chromatography, wheat


2010 ◽  
Vol 2 (7) ◽  
pp. 142-147
Author(s):  
O. Amos Abolaji ◽  
M. Ubana Eteng ◽  
E. Patrick Ebong ◽  
Andi Brisibe ◽  
Ahmed Shakil ◽  
...  

Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


Author(s):  
PULAGURTHA BHASKARARAO ◽  
GOWRI SANKAR DANNANA

Objective: Noscof tablet is a fixed dosage combination formulation having diphenhydramine (DH), ephedrine (ED), noscapine (NP), and glycerol glycolate (GG). A sensitive, selective, accurate, precise, and stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method with photodiode array detection has been developed and validated for simultaneous analysis of DH, ED, NP, and GG in bulk drug and Noscof tablets. Methods: Reversed-phase chromatographic separation and analysis of DH, ED, NP, and GG were done on an Altima C18 column with 0.01 M KH2PO4 buffer (pH 3.5) and acetonitrile (50:50%, v/v) as mobile phase at 0.8 ml/min flow rate in isocratic mode. Detection was performed at 260 nm. The method was validated in harmony with International Conference on Harmonization (ICH) guidelines. The tablet sample solution was subjected to diverse stress conditions using ICH strategy such as hydrolytic degradation (neutral - with distilled water, alkaline - with 2 N NaOH, and acidic - with 2 N HCl), oxidation (with 10% H2O2), photodegradation (exposing to UV light), and dry heat degradation (exposing to 105°C). Results: Using the above stated chromatographic conditions, sharp peaks were obtained for ED, NP, DH, and GG with retention time of 3.272 min, 4.098 min, 5.467 min, and 6.783 min, respectively. Good regression coefficient values were obtained in the range of 2–12 μg/ml for ED, 3.75–22.5 μg/ml for NP, 3.125–18.75 μg/ml for DH, and 25–150 μg/ml for GG. The quantification limits were 0.181 μg/ml, 0.187 μg/ml, 0.246 μg/ml, and 1.114 μg/ml for ED, NP, DH, and GG, respectively. The values of validation parameters are within the acceptance limits given by ICH. The ED, NP, DH, and GG showed more percent of degradation in acid condition and less percent of degradation in the neutral condition. The peaks of degradants did not interfere with the peaks of analytes. ED, NP, DH, and GG were assessed with a good percentage of the assay (near to 100%) and low percent relative standard deviation (<2%) in Noscof tablets using the proposed method. Conclusion: The stability indicating RP-HPLC method developed was suitable for quantifying ED, NP, DH, and GG simultaneously in bulk as well as in tablet formulation.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 115-125 ◽  
Author(s):  
K.-O. Vollmer ◽  
W. Klemisch ◽  
A. von Hodenberg

Abstract High performance liquid chromatography coupled with continuous radioactivity detection rep­resents an advancement in drug metabolism research. Using radioactive substances labelled in biologically stable positions, all metabolites can be specifically detected by radioactivity measure­ment. Thus no clean-up of biological fluids is required prior to HPLC. This can prevent artefact formation from unstable metabolites, reduces recovery problems and facilitates quantitation. Separation of highly polar and unpolar metabolites is possible in a single chromatographic run using gradient elution and reversed phase materials. This technique is also well-suited for prepara­tive isolation and purification of metabolites for subsequent structure elucidation. Various metabolite profiles of drugs labelled with carbon-14 or tritium are shown. Metabolites of the following drugs are presented: norfenefrine, etozolin, thymoxamine, naloxone, and levobunolol. We review the general methodology and report our experience with this technique. In principle, this technique may be useful for all biological systems in which tracer techniques are applied.


Sign in / Sign up

Export Citation Format

Share Document