scholarly journals Mitochondrial RNA processing defect caused by a SUPV3L1 mutation in two siblings with a novel neurodegenerative syndrome

Author(s):  
S.L. van Esveld ◽  
R.J. Rodenburg ◽  
F. Al‐Murshedi ◽  
E Al‐Ajmi ◽  
S Al‐Zuhaibi ◽  
...  
1994 ◽  
Vol 25 (3) ◽  
pp. 239-244 ◽  
Author(s):  
Peter M. Smooker ◽  
Ian J. Macreadie ◽  
Jeffrey L. Wright ◽  
H. B. Lukins

2013 ◽  
Vol 93 (2) ◽  
pp. 211-223 ◽  
Author(s):  
Tobias B. Haack ◽  
Robert Kopajtich ◽  
Peter Freisinger ◽  
Thomas Wieland ◽  
Joanna Rorbach ◽  
...  

1992 ◽  
Vol 12 (6) ◽  
pp. 2561-2569 ◽  
Author(s):  
L L Stohl ◽  
D A Clayton

Yeast mitochondrial DNA contains multiple promoters that sponsor different levels of transcription. Several promoters are individually located immediately adjacent to presumed origins of replication and have been suggested to play a role in priming of DNA replication. Although yeast mitochondrial DNA replication origins have not been extensively characterized at the primary sequence level, a common feature of these putative origins is the occurrence of a short guanosine-rich region in the priming strand downstream of the transcriptional start site. This situation is reminiscent of vertebrate mitochondrial DNA origins and raises the possibility of common features of origin function. In the case of human and mouse cells, there exists an RNA processing activity with the capacity to cleave at a guanosine-rich mitochondrial RNA sequence at an origin; we therefore sought the existence of a yeast endoribonuclease that had such a specificity. Whole cell and mitochondrial extracts of Saccharomyces cerevisiae contain an RNase that cleaves yeast mitochondrial RNA in a site-specific manner similar to that of the human and mouse RNA processing activity RNase MRP. The exact location of cleavage within yeast mitochondrial RNA corresponds to a mapped site of transition from RNA to DNA synthesis. The yeast activity also cleaved mammalian mitochondrial RNA in a fashion similar to that of the mammalian RNase MRPs. The yeast endonuclease is a ribonucleoprotein, as judged by its sensitivity to nucleases and proteinase, and it was present in yeast strains lacking mitochondrial DNA, which demonstrated that all components required for in vitro cleavage are encoded by nuclear genes. We conclude that this RNase is the yeast RNase MRP.


2020 ◽  
Vol 48 (10) ◽  
pp. 5572-5590 ◽  
Author(s):  
Maciej Szewczyk ◽  
Deepshikha Malik ◽  
Lukasz S Borowski ◽  
Sylwia D Czarnomska ◽  
Anna V Kotrys ◽  
...  

Abstract RNA decay is a key element of mitochondrial RNA metabolism. To date, the only well-documented machinery that plays a role in mtRNA decay in humans is the complex of polynucleotide phosphorylase (PNPase) and SUV3 helicase, forming the degradosome. REXO2, a homolog of prokaryotic oligoribonucleases present in humans both in mitochondria and the cytoplasm, was earlier shown to be crucial for maintaining mitochondrial homeostasis, but its function in mitochondria has not been fully elucidated. In the present study, we created a cellular model that enables the clear dissection of mitochondrial and non-mitochondrial functions of human REXO2. We identified a novel mitochondrial short RNA, referred to as ncH2, that massively accumulated upon REXO2 silencing. ncH2 degradation occurred independently of the mitochondrial degradosome, strongly supporting the hypothesis that ncH2 is a primary substrate of REXO2. We also investigated the global impact of REXO2 depletion on mtRNA, revealing the importance of the protein for maintaining low steady-state levels of mitochondrial antisense transcripts and double-stranded RNA. Our detailed biochemical and structural studies provide evidence of sequence specificity of the REXO2 oligoribonuclease. We postulate that REXO2 plays dual roles in human mitochondria, ‘scavenging’ nanoRNAs that are produced by the degradosome and clearing short RNAs that are generated by RNA processing.


1996 ◽  
Vol 16 (7) ◽  
pp. 3429-3436 ◽  
Author(s):  
V Stribinskis ◽  
G J Gao ◽  
P Sulo ◽  
Y L Dang ◽  
N C Martin

Rpm2p is a protein subunit of Saccharomyces cerevisiae yeast mitochondrial RNase P, an enzyme which removes 5' leader sequences from mitochondrial tRNA precursors. Precursor tRNAs accumulate in strains carrying a disrupted allele of RPM2. The resulting defect in mitochondrial protein synthesis causes petite mutants to form. We report here that alteration in the biogenesis of Rpm1r, the RNase P RNA subunit, is another consequence of disrupting RPM2. High-molecular-weight transcripts accumulate, and no mature Rpm1r is produced. Transcript mapping reveals that the smallest RNA accumulated is extended on both the 5' and 3' ends relative to mature Rpm1r. This intermediate and other longer transcripts which accumulate are also found as low-abundance RNAs in wild-type cells, allowing identification of processing events necessary for conversion of the primary transcript to final products. Our data demonstrate directly that Rpm1r is transcribed with its substrates, tRNA met f and tRNAPro, from a promoter located upstream of the tRNA met f gene and suggest that a portion also originates from a second promoter, located between the tRNA met f gene and RPM1. We tested the possibility that precursors accumulate because the RNase P deficiency prevents the removal of the downstream tRNAPro. Large RPM1 transcripts still accumulate in strains missing this tRNA. Thus, an inability to process cotranscribed tRNAs does not explain the precursor accumulation phenotype. Furthermore, strains with mutant RPM1 genes also accumulate precursor Rpm1r, suggesting that mutations in either gene can lead to similar biogenesis defects. Several models to explain precursor accumulation are presented.


2012 ◽  
Vol 287 (44) ◽  
pp. 37089-37097 ◽  
Author(s):  
Jason Aulds ◽  
Sara Wierzbicki ◽  
Adrian McNairn ◽  
Mark E. Schmitt

2017 ◽  
Author(s):  
Gaurav G. Shimpi ◽  
Sergio Vargas ◽  
Angelo Poliseno ◽  
Wörheide Gert

AbstractBackgroundMitogenome diversity is staggering among early branching animals with respect to size, gene density and content, gene orders, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals.ResultsWe characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5’ and/or 3’ untranslated regions (UTRs) of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, mtMutS, was found to undergo alternative polyadenylation (APA), and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected.ConclusionsMt-mRNA processing in octocorals bearing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represents a first step towards understanding its functional and evolutionary implications.


1992 ◽  
Vol 12 (6) ◽  
pp. 2561-2569
Author(s):  
L L Stohl ◽  
D A Clayton

Yeast mitochondrial DNA contains multiple promoters that sponsor different levels of transcription. Several promoters are individually located immediately adjacent to presumed origins of replication and have been suggested to play a role in priming of DNA replication. Although yeast mitochondrial DNA replication origins have not been extensively characterized at the primary sequence level, a common feature of these putative origins is the occurrence of a short guanosine-rich region in the priming strand downstream of the transcriptional start site. This situation is reminiscent of vertebrate mitochondrial DNA origins and raises the possibility of common features of origin function. In the case of human and mouse cells, there exists an RNA processing activity with the capacity to cleave at a guanosine-rich mitochondrial RNA sequence at an origin; we therefore sought the existence of a yeast endoribonuclease that had such a specificity. Whole cell and mitochondrial extracts of Saccharomyces cerevisiae contain an RNase that cleaves yeast mitochondrial RNA in a site-specific manner similar to that of the human and mouse RNA processing activity RNase MRP. The exact location of cleavage within yeast mitochondrial RNA corresponds to a mapped site of transition from RNA to DNA synthesis. The yeast activity also cleaved mammalian mitochondrial RNA in a fashion similar to that of the mammalian RNase MRPs. The yeast endonuclease is a ribonucleoprotein, as judged by its sensitivity to nucleases and proteinase, and it was present in yeast strains lacking mitochondrial DNA, which demonstrated that all components required for in vitro cleavage are encoded by nuclear genes. We conclude that this RNase is the yeast RNase MRP.


Sign in / Sign up

Export Citation Format

Share Document