scholarly journals Yeast mitochondrial RNase P RNA synthesis is altered in an RNase P protein subunit mutant: insights into the biogenesis of a mitochondrial RNA-processing enzyme.

1996 ◽  
Vol 16 (7) ◽  
pp. 3429-3436 ◽  
Author(s):  
V Stribinskis ◽  
G J Gao ◽  
P Sulo ◽  
Y L Dang ◽  
N C Martin

Rpm2p is a protein subunit of Saccharomyces cerevisiae yeast mitochondrial RNase P, an enzyme which removes 5' leader sequences from mitochondrial tRNA precursors. Precursor tRNAs accumulate in strains carrying a disrupted allele of RPM2. The resulting defect in mitochondrial protein synthesis causes petite mutants to form. We report here that alteration in the biogenesis of Rpm1r, the RNase P RNA subunit, is another consequence of disrupting RPM2. High-molecular-weight transcripts accumulate, and no mature Rpm1r is produced. Transcript mapping reveals that the smallest RNA accumulated is extended on both the 5' and 3' ends relative to mature Rpm1r. This intermediate and other longer transcripts which accumulate are also found as low-abundance RNAs in wild-type cells, allowing identification of processing events necessary for conversion of the primary transcript to final products. Our data demonstrate directly that Rpm1r is transcribed with its substrates, tRNA met f and tRNAPro, from a promoter located upstream of the tRNA met f gene and suggest that a portion also originates from a second promoter, located between the tRNA met f gene and RPM1. We tested the possibility that precursors accumulate because the RNase P deficiency prevents the removal of the downstream tRNAPro. Large RPM1 transcripts still accumulate in strains missing this tRNA. Thus, an inability to process cotranscribed tRNAs does not explain the precursor accumulation phenotype. Furthermore, strains with mutant RPM1 genes also accumulate precursor Rpm1r, suggesting that mutations in either gene can lead to similar biogenesis defects. Several models to explain precursor accumulation are presented.

Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 573-585
Author(s):  
Vilius Stribinskis ◽  
Guo-Jian Gao ◽  
Steven R Ellis ◽  
Nancy C Martin

Abstract RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa3 cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.


Author(s):  
Lisha Ha ◽  
Jennifer Colquhoun ◽  
Nicholas Noinaj ◽  
Chittaranjan Das ◽  
Paul M. Dunman ◽  
...  

Staphylococcus aureus ribonuclease-P-protein subunit (RnpA) is a promising antimicrobial target that is a key protein component for two essential cellular processes, RNA degradation and transfer-RNA (tRNA) maturation. The first crystal structure of RnpA from the pathogenic bacterial species, S. aureus, is reported at 2.0 Å resolution. The structure presented maintains key similarities with previously reported RnpA structures from bacteria and archaea, including the highly conserved RNR-box region and aromatic residues in the precursor-tRNA 5′-leader-binding domain. This structure will be instrumental in the pursuit of structure-based designed inhibitors targeting RnpA-mediated RNA processing as a novel therapeutic approach for treating S. aureus infections.


2018 ◽  
Author(s):  
Agnes Karasik ◽  
Carol A. Fierke ◽  
Markos Koutmos

ABSTRACTHuman mitochondrial ribonuclease P (mtRNase P) is an essential three protein complex that catalyzes the 5’ end maturation of mitochondrial precursor tRNAs (pre-tRNAs). MRPP3 (Mitochondrial RNase P Protein 3), a protein-only RNase P (PRORP), is the nuclease component of the mtRNase P complex and requires a two-protein S-adenosyl methionine (SAM)-dependent methyltransferase MRPP1/2 sub-complex to function. Dysfunction of mtRNase P is linked to several human mitochondrial diseases, such as mitochondrial myopathies. Despite its central role in mitochondrial RNA processing, little is known about how the protein subunits of mtRNase P function synergistically. Here we use purified mtRNase P to demonstrate that mtRNase P recognizes, cleaves, and methylates some, but not all, mitochondrial pre-tRNAs in vitro. Additionally, mtRNase P does not process all mitochondrial pre-tRNAs uniformly, suggesting the possibility that some pre-tRNAs require additional factors to be cleaved in vivo. Consistent with this, we found that addition of the MRPP1 co-factor SAM enhances the ability of mtRNase P to bind and cleave some mitochondrial pre-tRNAs. Furthermore, the presence of MRPP3 can enhance the methylation activity of MRPP1/2. Taken together, our data demonstrate that the subunits of mtRNase P work together to efficiently recognize, process and methylate human mitochondrial pre-tRNAs.


2019 ◽  
Vol 47 (12) ◽  
pp. 6425-6438 ◽  
Author(s):  
Ezequiel-Alejandro Madrigal-Carrillo ◽  
Carlos-Alejandro Díaz-Tufinio ◽  
Hugo-Aníbal Santamaría-Suárez ◽  
Marcelino Arciniega ◽  
Alfredo Torres-Larios

AbstractRibonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5′ tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5′ leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.


2016 ◽  
Vol 27 (7) ◽  
pp. 1154-1169 ◽  
Author(s):  
Alyshia Newhart ◽  
Sara Lawrence Powers ◽  
Prashanth Krishna Shastrula ◽  
Isabel Sierra ◽  
Lucy M. Joo ◽  
...  

In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153798 ◽  
Author(s):  
Alla Singh ◽  
Shah Ubaid-ullah ◽  
Anup K. Ramteke ◽  
Janendra K Batra
Keyword(s):  
Rnase P ◽  

1995 ◽  
Vol 15 (9) ◽  
pp. 4763-4770 ◽  
Author(s):  
C K Kassenbrock ◽  
G J Gao ◽  
K R Groom ◽  
P Sulo ◽  
M G Douglas ◽  
...  

RPM2 is identified here as a high-copy suppressor of isp42-3, a temperature-sensitive mutant allele of the mitochondrial protein import channel component, Isp42p. RPM2 already has an established role as a protein component of yeast mitochondrial RNase P, a ribonucleoprotein enzyme required for the 5' processing of mitochondrial precursor tRNAs. A relationship between mitochondrial tRNA processing and protein import is not readily apparent, and, indeed, the two functions can be separated. Truncation mutants lacking detectable RNase P activity still suppress the isp42-3 growth defect. Moreover, RPM2 is required for normal fermentative yeast growth, even though mitochondrial RNase P activity is not. The portion of RPM2 required for normal growth and suppression of isp42-3 is the same. We conclude that RPM2 is a multifunctional gene. We find Rpm2p to be a soluble protein of the mitochondrial matrix and discuss models to explain its suppression of isp42-3.


2017 ◽  
Author(s):  
Irit Hochberg ◽  
Leigh A. M. Demain ◽  
Jill E. Urquhart ◽  
Albert Amberger ◽  
Andrea J. Deutschmann ◽  
...  

AbstractPerrault syndrome is a rare autosomal recessive condition characterised by sensorineural hearing loss in both sexes and primary ovarian insufficiency in 46 XX, females. It is genetically heterogeneous with biallelic variants in six genes identified to date (HSD17B4, HARS2, LARS2, CLPP, C10orf2 and ERAL1). Most genes possessing variants associated with Perrault syndrome are involved in mitochondrial translation. We describe a consanguineous family with three affected individuals homozygous for a novel missense variant c.1454C>T; p.(Ala485Val) in KIAA0391, encoding proteinaceous RNase P (PRORP), the metallonuclease subunit of the mitochondrial RNase P complex, responsible for the 5’-end processing of mitochondrial precursor tRNAs. In RNase P activity assays, RNase P complexes containing the PRORP disease variant produced ~35-45% less 5’-processed tRNA than wild type PRORP. Consistently, the accumulation of unprocessed polycistronic mitochondrial transcripts was observed in patient dermal fibroblasts, leading to an observable loss of steady-state levels of mitochondrial oxidative phosphorylation components. Expression of wild type KIAA0391 in patient fibroblasts rescued tRNA processing. Immunohistochemistry analyses of the auditory sensory epithelium from postnatal and adult mouse inner ear showed a high level of PRORP in the efferent synapses and nerve fibres of hair cells, indicating a possible mechanism for the sensorineural hearing loss observed in affected individuals. We have identified a variant in an additional gene associated with Perrault syndrome. With the identification of this disease-causing variant in KIAA0391, reduced function of each of the three subunits of mitochondrial RNase P have now been associated with distinct clinical presentations.Author SummaryPerrault syndrome is a rare genetic condition which results in hearing loss in both sexes and ovarian dysfunction in females. Perrault syndrome may also cause neurological symptoms in some patients. Here, we present the features and genetic basis of the condition in three sisters affected by Perrault syndrome. The sisters did not have pathogenic variants in any of the genes previously associated with Perrault syndrome. We identified a change in the gene KIAA0391, encoding PRORP, a subunit of the mitochondrial RNase P complex. Mitochondrial RNase P is a key enzyme in RNA processing in mitochondria. Impaired RNA processing reduces protein production in mitochondria, which we observed in patient cells along with high levels of unprocessed RNA. When we expressed wild type PRORP in patient cells, the RNA processing improved. We also investigated PRORP localisation in the mouse inner ear and found high levels in the synapses and nerve fibers that transmit sound. It may be that disruption of RNA processing in the mitochondria of these cells causes hearing loss in this family.


2006 ◽  
Vol 188 (19) ◽  
pp. 6816-6823 ◽  
Author(s):  
Markus Gößringer ◽  
Rosel Kretschmer-Kazemi Far ◽  
Roland K. Hartmann

ABSTRACT Bacterial RNase P is composed of an RNA subunit and a single protein subunit (encoded by the rnpB and rnpA genes, respectively). We constructed Bacillus subtilis mutant strains that conditionally express the RNase P protein under control of the xylose promoter (P xyl ). In one strain (d7), rnpA expression was efficiently repressed in the absence of the inducer xylose, leading to cell growth arrest. Growth could be restored by a second functional rnpA allele. This is the first RNase P protein knockdown strain, providing the first direct proof that the rnpA gene is essential in B. subtilis and, by inference, in other bacteria. We further show (i) that, in the wild-type context, rnpA expression is attenuated by transcriptional polarity and (ii) that translation of rnpA mRNA in B. subtilis can be initiated at two alternative start codons. His-tagged RNase P protein variants are functional in vivo and permit purification of in vivo-assembled holoenzymes by affinity chromatography. Simultaneous expression of plasmid-encoded RNase P RNA and His-tagged protein increased RNase P holoenzyme yields. Massive overproduction of RNase P protein in strain d7 is compatible with cell viability.


2009 ◽  
Vol 75 (24) ◽  
pp. 7734-7738 ◽  
Author(s):  
Shoji Ohuchi ◽  
Dirk Schüler

ABSTRACT Magnetosomes are unique bacterial organelles comprising membrane-enveloped magnetic crystals produced by magnetotactic bacteria. Because of several desirable chemical and physical properties, magnetosomes would be ideal scaffolds on which to display highly complicated biological complexes artificially. As a model experiment for the functional expression of a multisubunit complex on magnetosomes, we examined the display of a chimeric bacterial RNase P enzyme composed of the protein subunit (C5) of Escherichia coli RNase P and the endogenous RNA subunit by expressing a translational fusion of C5 with MamC, a known magnetosome protein, in the magnetotactic bacterium Magnetospirillum gryphiswaldense. As intended, the purified C5 fusion magnetosomes, but not wild-type magnetosomes, showed apparent RNase P activity and the association of a typical bacterial RNase P RNA. Our results demonstrate for the first time that magnetosomes can be employed as scaffolds for the display of multisubunit complexes.


Sign in / Sign up

Export Citation Format

Share Document