scholarly journals Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming.

1992 ◽  
Vol 12 (6) ◽  
pp. 2561-2569 ◽  
Author(s):  
L L Stohl ◽  
D A Clayton

Yeast mitochondrial DNA contains multiple promoters that sponsor different levels of transcription. Several promoters are individually located immediately adjacent to presumed origins of replication and have been suggested to play a role in priming of DNA replication. Although yeast mitochondrial DNA replication origins have not been extensively characterized at the primary sequence level, a common feature of these putative origins is the occurrence of a short guanosine-rich region in the priming strand downstream of the transcriptional start site. This situation is reminiscent of vertebrate mitochondrial DNA origins and raises the possibility of common features of origin function. In the case of human and mouse cells, there exists an RNA processing activity with the capacity to cleave at a guanosine-rich mitochondrial RNA sequence at an origin; we therefore sought the existence of a yeast endoribonuclease that had such a specificity. Whole cell and mitochondrial extracts of Saccharomyces cerevisiae contain an RNase that cleaves yeast mitochondrial RNA in a site-specific manner similar to that of the human and mouse RNA processing activity RNase MRP. The exact location of cleavage within yeast mitochondrial RNA corresponds to a mapped site of transition from RNA to DNA synthesis. The yeast activity also cleaved mammalian mitochondrial RNA in a fashion similar to that of the mammalian RNase MRPs. The yeast endonuclease is a ribonucleoprotein, as judged by its sensitivity to nucleases and proteinase, and it was present in yeast strains lacking mitochondrial DNA, which demonstrated that all components required for in vitro cleavage are encoded by nuclear genes. We conclude that this RNase is the yeast RNase MRP.

1992 ◽  
Vol 12 (6) ◽  
pp. 2561-2569
Author(s):  
L L Stohl ◽  
D A Clayton

Yeast mitochondrial DNA contains multiple promoters that sponsor different levels of transcription. Several promoters are individually located immediately adjacent to presumed origins of replication and have been suggested to play a role in priming of DNA replication. Although yeast mitochondrial DNA replication origins have not been extensively characterized at the primary sequence level, a common feature of these putative origins is the occurrence of a short guanosine-rich region in the priming strand downstream of the transcriptional start site. This situation is reminiscent of vertebrate mitochondrial DNA origins and raises the possibility of common features of origin function. In the case of human and mouse cells, there exists an RNA processing activity with the capacity to cleave at a guanosine-rich mitochondrial RNA sequence at an origin; we therefore sought the existence of a yeast endoribonuclease that had such a specificity. Whole cell and mitochondrial extracts of Saccharomyces cerevisiae contain an RNase that cleaves yeast mitochondrial RNA in a site-specific manner similar to that of the human and mouse RNA processing activity RNase MRP. The exact location of cleavage within yeast mitochondrial RNA corresponds to a mapped site of transition from RNA to DNA synthesis. The yeast activity also cleaved mammalian mitochondrial RNA in a fashion similar to that of the mammalian RNase MRPs. The yeast endonuclease is a ribonucleoprotein, as judged by its sensitivity to nucleases and proteinase, and it was present in yeast strains lacking mitochondrial DNA, which demonstrated that all components required for in vitro cleavage are encoded by nuclear genes. We conclude that this RNase is the yeast RNase MRP.


1983 ◽  
Vol 3 (11) ◽  
pp. 1949-1957
Author(s):  
R Kelly ◽  
S L Phillips

A cDNA preparation, synthesized by using Saccharomyces cerevisiae mitochondrial RNA as template and oligodeoxythymidylic acid as primer, was found to specifically hybridize to the mitochondrial 21S rRNA by the following criteria: (i) it hybridizes only to the 21S RNA species in mitochondrial RNA and not to RNA from a [rho0] mutant, and (ii) it hybridizes to fragments in restriction digests of mitochondrial DNA that contain the 21S rRNA gene but not to nuclear DNA. This cDNA was used as a probe to demonstrate that a 2.6-fold decrease in the cellular level of the mitochondrial large rRNA is associated with glucose repression of mitochondrial function in S. cerevisiae. A corresponding decrease in the level of mitochondrial DNA was not observed.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1029-1042 ◽  
Author(s):  
Ti Cai ◽  
Jason Aulds ◽  
Tina Gill ◽  
Michael Cerio ◽  
Mark E Schmitt

Abstract We have identified a cell cycle delay in Saccharomyces cerevisiae RNase MRP mutants. Mutants delay with large budded cells, dumbbell-shaped nuclei, and extended spindles characteristic of “exit from mitosis” mutants. In accord with this, a RNase MRP mutation can be suppressed by overexpressing the polo-like kinase CDC5 or by deleting the B-type cyclin CLB1, without restoring the MRP-dependent rRNA-processing step. In addition, we identified a series of genetic interactions between RNase MRP mutations and mutations in CDC5, CDC14, CDC15, CLB2, and CLB5. As in most “exit from mitosis” mutants, levels of the Clb2 cyclin were increased. The buildup of Clb2 protein is not the result of a defect in the release of the Cdc14 phosphatase from the nucleolus, but rather the result of an increase in CLB2 mRNA levels. These results indicate a clear role of RNase MRP in cell cycle progression at the end of mitosis. Conservation of this function in humans may explain many of the pleiotropic phenotypes of cartilage hair hypoplasia.


2008 ◽  
Vol 227 (3) ◽  
pp. 657-662 ◽  
Author(s):  
Apollonia Tullo ◽  
Walter Rossmanith ◽  
Esther-Maria Imre ◽  
Elisabetta Sbisà ◽  
Cecilia Saccone ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 533 ◽  
Author(s):  
Brieba

Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.


1995 ◽  
Vol 15 (1) ◽  
pp. 580-589 ◽  
Author(s):  
B Xu ◽  
D A Clayton

Critical features of the mitochondrial leading-strand DNA replication origin are conserved from Saccharomyces cerevisiae to humans. These include a promoter and a downstream GC-rich sequence block (CSBII) that encodes rGs within the primer RNA. During in vitro transcription at yeast mitochondrial replication origins, there is stable and persistent RNA-DNA hybrid formation that begins at the 5' end of the rG region. The short rG-dC sequence is the necessary and sufficient nucleic acid element for establishing stable hybrids, and the presence of rGs within the RNA strand of the RNA-DNA hybrid is required. The efficiency of hybrid formation depends on the length of RNA synthesized 5' to CSBII and the type of RNA polymerase employed. Once made, the RNA strand of an RNA-DNA hybrid can serve as an effective primer for mitochondrial DNA polymerase. These results reveal a new mechanism for persistent RNA-DNA hybrid formation and suggest a step in priming mitochondrial DNA replication that requires both mitochondrial RNA polymerase and an rG-dC sequence-specific event to form an extensive RNA-DNA hybrid.


Sign in / Sign up

Export Citation Format

Share Document