mitochondrial trna
Recently Published Documents


TOTAL DOCUMENTS

382
(FIVE YEARS 59)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 952
Author(s):  
Siarhei A. Dabravolski ◽  
Victoria A. Khotina ◽  
Vasily N. Sukhorukov ◽  
Vladislav A. Kalmykov ◽  
Liudmila M. Mikhaleva ◽  
...  

Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.


2022 ◽  
Author(s):  
Yujuan Qi ◽  
Zhenhua Wu ◽  
Yaobang Bai ◽  
Yan Jiao ◽  
Peijun Li

Objectives: Dilated cardiomyopathy (DCM) is a complex cardiovascular disease with unknown etiology. Although nuclear genes play active roles in DCM, mitochondrial dysfunction was believed to be involved in the pathogenesis of DCM. The objective of this study is to analysis the association between mitochondrial tRNA (mt-tRNA) mutations and DCM. Material and Methods: We performed a mutational analysis of mt-tRNA genes in a cohort of 318 patients with DCM and 200 age- and gender-matched control subjects. To further assess their pathogenicity, phylogenetic analysis and mitochondrial functions including mtDNA copy number, ATP and ROS were analyzed. Results: 7 possible pathogenic mutations: MT-TL1 3302A>G, MT-TI 4295A>G, MT-TM 4435A>G, MT-TA 5655T>C, MT-TH 12201T>C, MT-TE 14692A>G and MT-TT 15927G>A were identified in DCM group but absent in controls. These mutations occurred at extremely conserved nucleotides of corresponding tRNAs, and led to the failure in tRNAs metabolism. Moreover, a significant reduction in ATP and mtDNA copy number, whereas a markedly increased in ROS level were observed in polymononuclear leukocytes (PMNs) derived from the DCM patients carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for DCM. Conclusions: Our data indicated that mt-tRNA mutations may be the molecular basis for DCM, which shaded novel insight into the pathophysiology of DCM that was manifestated by mitochondrial dysfunction.


2021 ◽  
Vol 81 (23) ◽  
pp. 4765-4767
Author(s):  
Eva Kowalinski ◽  
Juan D. Alfonzo
Keyword(s):  

2021 ◽  
Author(s):  
Ang Li ◽  
Xuemeng Sun ◽  
A Emilia Arguello ◽  
Ralph E Kleiner

Epitranscriptomic RNA modifications can regulate biological processes, but there remains a major gap in our ability to identify and measure individual modifications at nucleotide resolution. Here we present Mal-Seq, a chemical method to sequence 5-formylcytosine (f5C) modifications on RNA based upon selective and efficient malononitrile-mediated labeling of f5C residues to generate adducts that are read as C-to-T mutations upon reverse transcription and PCR amplification. We apply Mal-Seq to characterize the prevalence of f5C at the wobble position of mt-tRNA(Met) in different organisms and tissue types and find that high-level f5C modification is present in mammals but lacking in lower eukaryotes. Our work sheds light on mitochondrial tRNA modifications throughout eukaryotic evolution and provides a general platform for characterizing the f5C epitranscriptome.


2021 ◽  
Vol 31 (5) ◽  
Author(s):  
Tian Xia ◽  
Ying Pang ◽  
Huimin Xiong

Background: Myopia is a very common eye disease with an unknown etiology. Increasing evidence shows that mitochondrial dysfunction plays an active role in the pathogenesis and progression of this disease. Objectives: The purpose of this study was to analyze the relationship between mitochondrial tRNA (mt-tRNA) variants and high myopia (HM). Methods: The entire mt-tRNA genes of 150 children with HM, as well as 100 healthy subjects, were PCR-amplified and sequenced. To assess the pathogenicity, we used the phylogenetic conservation analysis and pathogenicity scoring system. Results: We identified six candidate pathogenic variants: tRNALeu (UUR) T3290C, tRNAIle A4317G, tRNAAla G5591A, tRNASer (UCN) T7501C, tRNAHis T12201C, and tRNAThr G15915A. However, these variants were not identified in controls. Further phylogenetic analysis revealed that these variants occurred at the positions, which were very evolutionarily conserved and may have structural-functional impacts on the tRNAs. Subsequently, these variants may lead to the impairment of mitochondrial translation and aggravated mitochondrial dysfunction, which play an active role in the phenotypic expression of HM. Conclusions: Our results suggested that variants in mt-tRNA genes were the risk factors for HM, which provided valuable information for the early detection and prevention of HM.


Author(s):  
Arjun Bhatta ◽  
Christian Dienemann ◽  
Patrick Cramer ◽  
Hauke S. Hillen

AbstractHuman mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Athanasios-Nasir Shaukat ◽  
Eleni G. Kaliatsi ◽  
Vassiliki Stamatopoulou ◽  
Constantinos Stathopoulos

Mutations in human mitochondrial tRNAs (mt-tRNAs) are responsible for several and sometimes severe clinical phenotypes, classified among mitochondrial diseases. In addition, post-transcriptional modifications of mt-tRNAs in correlation with several stress signals can affect their stability similarly to what has been described for their nuclear-encoded counterparts. Many of the perturbations related to either point mutations or aberrant modifications of mt-tRNAs can lead to specific cleavage and the production of mitochondrial tRNA-derived fragments (mt-tRFs). Although mt-tRFs have been detected in several studies, the exact biogenesis steps and biological role remain, to a great extent, unexplored. Several mt-tRFs are produced because of the excessive oxidative stress which predominantly affects mitochondrial DNA integrity. In addition, mt-tRFs have been detected in various diseases with possible detrimental consequences, but also their production may represent a response mechanism to external stimuli, including infections from pathogens. Finally, specific point mutations on mt-tRNAs have been reported to impact the pool of the produced mt-tRFs and there is growing evidence suggesting that mt-tRFs can be exported and act in the cytoplasm. In this review, we summarize current knowledge on mitochondrial tRNA-deriving fragments and their possible contribution to gene expression regulation.


2021 ◽  
Vol Volume 14 ◽  
pp. 5719-5735
Author(s):  
Liangyan Lin ◽  
Dongdong Zhang ◽  
Qingsong Jin ◽  
Yaqin Teng ◽  
Xiaoyan Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document