scholarly journals Stimulating pyruvate dehydrogenase complex reduces itaconate levels and enhances TCA cycle anabolic bioenergetics in acutely inflamed monocytes

2020 ◽  
Vol 107 (3) ◽  
pp. 467-484 ◽  
Author(s):  
Xuewei Zhu ◽  
David Long ◽  
Manal Zabalawi ◽  
Brian Ingram ◽  
Barbara K. Yoza ◽  
...  
2012 ◽  
Vol 287 (42) ◽  
pp. 35153-35160 ◽  
Author(s):  
Thomas R. Hurd ◽  
Yvonne Collins ◽  
Irina Abakumova ◽  
Edward T. Chouchani ◽  
Bartlomiej Baranowski ◽  
...  

Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H2O2) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H2O2 derives from superoxide (O2̇̄), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O2̇̄ production, such as may occur under nutrient excess and low ATP demand, the increase in O2̇̄ and H2O2 may provide feedback signals to modulate mitochondrial metabolism.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenhua Zeng ◽  
Qiaobing Huang ◽  
Liangfeng Mao ◽  
Jie Wu ◽  
Sheng An ◽  
...  

Anaerobic glycolysis is the process by which glucose is broken down into pyruvate and lactate and is the primary metabolic pathway in sepsis. The pyruvate dehydrogenase complex (PDHC) is a multienzyme complex that serves as a critical hub in energy metabolism. Under aerobic conditions, pyruvate translocates to mitochondria, where it is oxidized into acetyl-CoA through the activation of PDHC, thereby accelerating aerobic oxidation. Both phosphorylation and acetylation affect PDHC activity and, consequently, the regulation of energy metabolism. The mechanisms underlying the protective effects of PDHC in sepsis involve the regulation on the balance of lactate, the release of inflammatory mediators, the remodeling of tricarboxylic acid (TCA) cycle, as well as on the improvement of lipid and energy metabolism. Therapeutic drugs that target PDHC activation for sepsis treatment include dichloroacetate, thiamine, amrinone, TNF-binding protein, and ciprofloxacin. In this review, we summarize the recent findings regarding the metabolic regulation of PDHC in sepsis and the therapies targeting PDHC for the treatment of this condition.


2003 ◽  
Vol 3 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Peter Stacpoole ◽  
Renius Owen ◽  
Terence Flotte

Sign in / Sign up

Export Citation Format

Share Document