scholarly journals Greenland precipitation trends in a long-term instrumental climate context (1890-2012): evaluation of coastal and ice core records

2014 ◽  
Vol 35 (2) ◽  
pp. 303-320 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Edward Hanna ◽  
Joseph R. McConnell ◽  
Michael Sigl ◽  
Andrew P. Beckerman ◽  
...  
2007 ◽  
Vol 112 (D23) ◽  
Author(s):  
Hilde Fagerli ◽  
Michel Legrand ◽  
Susanne Preunkert ◽  
Vigdis Vestreng ◽  
David Simpson ◽  
...  

2017 ◽  
Author(s):  
Matthew Toohey ◽  
Michael Sigl

Abstract. The injection of sulphur into the stratosphere by explosive volcanic eruptions is the cause of significant climate variability. Based on sulphate records from a suite of ice cores from Greenland and Antarctica, the eVolv2k database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulphur injection (VSSI) events from 500 BCE to 1900 CE, constituting an update of prior reconstructions and an extension of the record by 1000 years. The VSSI estimates incorporate improvements to the ice core records in terms of synchronization and dating, refinements to the methods used to estimate VSSI from ice core records, and includes first estimates of the random uncertainties in VSSI values. VSSI estimates for many of the largest eruptions, including Samalas (1257), Tambora (1815) and Laki (1783) are within 10% of prior estimates. A number of strong events are included in eVolv2k which are largely underestimated or not included in earlier VSSI reconstructions, including events in 540, 574, 682 and 1108 CE. The long term annual mean VSSI from major volcanic eruptions is estimated to be ∼ 0.5 Tg [S] yr−1, ∼ 50 % greater than a prior reconstruction, due to the identification of more events and an increase in the magnitude of many intermediate events. A long-term, latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the eVolv2k VSSI estimates, and the resulting global mean SAOD is found to be similar (within 33%) to a prior reconstruction for most of the largest eruptions. The long-term (500 BCE–900 CE) average global mean SAOD estimated from the eVolv2k VSSI estimates and including a constant "background" injection of stratospheric sulphur is ∼ 0.014, 30 % greater than a prior reconstruction. These new long-term reconstructions of past VSSI and SAOD variability give context to recent volcanic forcing, suggesting that the 20th century was a period of somewhat weaker than average volcanic forcing, with current best estimates of 20th century mean VSSI and SAOD values being 25 and 14 % less, respectively, than the mean of the 500 BCE to 1900 CE period. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/WDCC/eVolv2k_v2>.


2017 ◽  
Vol 9 (2) ◽  
pp. 809-831 ◽  
Author(s):  
Matthew Toohey ◽  
Michael Sigl

Abstract. The injection of sulfur into the stratosphere by explosive volcanic eruptions is the cause of significant climate variability. Based on sulfate records from a suite of ice cores from Greenland and Antarctica, the eVolv2k database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events from 500 BCE to 1900 CE, constituting an update of prior reconstructions and an extension of the record by 1000 years. The database incorporates improvements to the ice core records (in terms of synchronisation and dating) and refinements to the methods used to estimate VSSI from ice core records, and it includes first estimates of the random uncertainties in VSSI values. VSSI estimates for many of the largest eruptions, including Samalas (1257), Tambora (1815), and Laki (1783), are within 10 % of prior estimates. A number of strong events are included in eVolv2k which are largely underestimated or not included in earlier VSSI reconstructions, including events in 540, 574, 682, and 1108 CE. The long-term annual mean VSSI from major volcanic eruptions is estimated to be  ∼ 0.5 Tg [S] yr−1,  ∼ 50 % greater than a prior reconstruction due to the identification of more events and an increase in the magnitude of many intermediate events. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the eVolv2k VSSI estimates, and the resulting global mean SAOD is found to be similar (within 33 %) to a prior reconstruction for most of the largest eruptions. The long-term (500 BCE–1900 CE) average global mean SAOD estimated from the eVolv2k VSSI estimates including a constant background injection of stratospheric sulfur is  ∼ 0.014, 30 % greater than a prior reconstruction. These new long-term reconstructions of past VSSI and SAOD variability give context to recent volcanic forcing, suggesting that the 20th century was a period of somewhat weaker than average volcanic forcing, with current best estimates of 20th century mean VSSI and SAOD values being 25 and 14 % less, respectively, than the mean of the 500 BCE to 1900 CE period. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/WDCC/eVolv2k_v2.


2021 ◽  
Vol 34 (10) ◽  
pp. 3839-3852
Author(s):  
Stacy E. Porter ◽  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Aaron B. Wilson

AbstractUsing an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions from the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughout the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.


2013 ◽  
Vol 9 (4) ◽  
pp. 1403-1416 ◽  
Author(s):  
S. Preunkert ◽  
M. Legrand

Abstract. Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl−, NO3−, and SO42−) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.


2017 ◽  
Vol 44 (17) ◽  
pp. 9084-9092 ◽  
Author(s):  
J. Scott Hosking ◽  
Ryan Fogt ◽  
Elizabeth R. Thomas ◽  
Vahid Moosavi ◽  
Tony Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document