Origin of early-spring central Pacific warming as the 1982-1983 El Niño precursor

2018 ◽  
Vol 38 (6) ◽  
pp. 2899-2906 ◽  
Author(s):  
Ji-Won Kim ◽  
Soon-Il An
2016 ◽  
Author(s):  
Niklas Schneider ◽  
E. Di Lorenzo ◽  
K. Cobb ◽  
B. T. Anderson ◽  
D. J. Vimont

2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Héctor Nava ◽  
Norma López ◽  
Pedro Ramírez‐García ◽  
Elizabeth Garibay‐Valladolid

2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Guojian Wang ◽  
Wenju Cai

Abstract The 2019/20 Australian black summer bushfires were particularly severe in many respects, including its early commencement, large spatial coverage, and large number of burning days, preceded by record dry and hot anomalies. Determining whether greenhouse warming has played a role is an important issue. Here, we examine known modes of tropical climate variability that contribute to droughts in Australia to provide a gauge. We find that a two-year consecutive concurrence of the 2018 and 2019 positive Indian Ocean Dipole and the 2018 and 2019 Central Pacific El Niño, with the former affecting Southeast Australia, and the latter influencing eastern and northeastern Australia, may explain many characteristics of the fires. Such consecutive events occurred only once in the observations since 1911. Using two generations of state-of-the-art climate models under historical and a business-as-usual emission scenario, we show that the frequency of such consecutive concurrences increases slightly, but rainfall anomalies during such events are stronger in the future climate, and there are drying trends across Australia. The impact of the stronger rainfall anomalies during such events under drying trends is likely to be exacerbated by greenhouse warming-induced rise in temperatures, making such events in the future even more extreme.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


Sign in / Sign up

Export Citation Format

Share Document