Annual, Interannual, and Intraseasonal Variability of Tropical Tropopause Transition Layer Cirrus

2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.

2016 ◽  
Vol 29 (22) ◽  
pp. 8013-8025 ◽  
Author(s):  
Wenchang Yang ◽  
Gudrun Magnusdottir

Abstract The intertropical convergence zone (ITCZ) in the east Pacific is located north of the equator during most of the year. In daily data it is most variable in March–April when it may be located north of the equator (nITCZ), on both sides of the equator (dITCZ), or south of the equator (sITCZ), or it may be absent (when convection does not take on a zonally elongated form). Additionally, in strong El Niño years it is located on the equator during the boreal winter half-year. Here the focus is on conditions when the ITCZ has a presence south of the equator (dITCZ, sITCZ) and composites of various fields are compared to “normal conditions” [i.e., when the ITCZ is north of the equator (nITCZ)]. Composites of sea surface temperature (SST), precipitation, outgoing longwave radiation, and the upper-level circulation show very similar patterns for dITCZ and sITCZ days, where the latter cases have almost double the amplitude of the former. The sITCZ state is viewed as an extreme case of the dITCZ state. Both are found to be related to the central Pacific (CP) La Niña with anomalous positive SST and atmospheric heating over the western tropical Pacific and anomalous negative SST and cooling over the central tropical Pacific. Ocean–atmosphere interaction plays an important role in developing the dITCZ and sITCZ anomalies. These daily composite patterns can be reproduced by the regression of monthly fields on the cold CP El Niño–Southern Oscillation mode, suggesting that the interannual rather than day-to-day variability dominates in contributing to the patterns of the composites.


2017 ◽  
Vol 30 (24) ◽  
pp. 10047-10066 ◽  
Author(s):  
Sulian Thual ◽  
Andrew Majda ◽  
Nan Chen

Recently, a simple stochastic dynamical model was developed that automatically captures the diversity and intermittency of El Niño–Southern Oscillation (ENSO) in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean–atmosphere processes that are otherwise deterministic, linear, and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model’s atmosphere dynamics with no ad hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, the eastern Pacific moderate and super El Niño and the central Pacific El Niño and La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 71
Author(s):  
Edgard Gonzales ◽  
Eusebio Ingol

In 2017, extreme rainfall events occurred in the northern portion of Peru, causing nearly 100,000 victims, according to the National Emergency Operations Center (COEN). This climatic event was attributed to the occurrence of the El Niño Southern Oscillation (ENSO). Therefore, the main objective of this study was to determine and differentiate between the occurrence of canonical ENSO, with a new type of ENSO called “El Niño Costero” (Coastal El Niño). The polynomial equation method was used to analyze the data from the different types of existing ocean indices to determine the occurrence of ENSO. It was observed that the anomalies of sea surface temperature (SST) 2.5 °C (January 2016) generated the “Modoki El Niño” and that the anomaly of SST −0.3 °C (January 2017) generated the “Modoki La Niña”; this sequential generation generated El Niño Costero. This new knowledge about the sui generis origin of El Niño Costero, based on the observations of this analysis, will allow us to identify and obtain important information regarding the occurrence of this event. A new oceanic index called the Pacific Regional Equatorial Index (PREI) was proposed to follow the periodic evolution and forecast with greater precision a new catastrophic event related to the occurrence of El Niño Costero and to implement prevention programs.


2015 ◽  
Vol 12 (21) ◽  
pp. 17643-17692 ◽  
Author(s):  
G. Fischer ◽  
O. Romero ◽  
U. Merkel ◽  
B. Donner ◽  
M. Iversen ◽  
...  

Abstract. A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analyzed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales possibly linked to the Atlantic Multidedadal Oscillation (AMO). High winter fluxes of biogenic silica (BSi), used as a measure of marine production mostly by diatoms largely correspond to a positive North Atlantic Oscillation (NAO) index during boreal winter (December–March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004–2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter but also in summer/fall enhanced particle sedimentation and carbon export on rather short timescales via the ballasting effect, thus leading to these episodic sedimentation events. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) weakened the relationships between fluxes and larger scale climatic oscillations. As phytoplankton biomass is high throughout the year in our study area, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by being incorporated into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all fluxes occurred during the strongest El Niño–Southern Oscillation (ENSO) in 1997–1999 where low fluxes were obtained for almost one year during the warm El Niño and high fluxes in the following cold La Niña phase. Bakun (1990) suggested an intensification of coastal upwelling due to increased winds ("Bakun upwelling intensification hypothesis", Cropper et al., 2014) and global change. We did not observe an increase of any flux component off Cape Blanc during the past two and a half decades which might support this hypothesis. Furthermore, fluxes of mineral dust did not show any positive or negative trends over time which would have suggested enhanced desertification or "Saharan greening" during the last few decades.


2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


2013 ◽  
Vol 26 (19) ◽  
pp. 7720-7733 ◽  
Author(s):  
Philip J. Klotzbach ◽  
Eric S. Blake

Abstract Both El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) have been documented in previous research to impact tropical cyclone (TC) activity around the globe. This study examines the relationship of each mode individually along with a combined index on tropical cyclone activity in the north-central Pacific. Approximately twice as many tropical cyclones form in the north-central Pacific in El Niño years compared with La Niña years. These differences are attributed to a variety of factors, including warmer sea surface temperatures, lower sea level pressures, increased midlevel moisture, and anomalous midlevel ascent in El Niño years. When the convectively enhanced phase of the MJO is located over the eastern and central tropical Pacific, the north-central Pacific tends to have more tropical cyclone activity, likely because of reduced vertical wind shear, lower sea level pressures, and increased vertical motion. The convectively enhanced phase of the MJO is also responsible for most of the TCs that undergo rapid intensification in the north-central Pacific. A combined MJO–ENSO index that is primarily associated with anomalous rising motion over the tropical eastern Pacific has an even stronger relationship with north-central Pacific TCs, as well as rapid intensification, than either individually.


2018 ◽  
Vol 31 (15) ◽  
pp. 6189-6207 ◽  
Author(s):  
Scott B. Power ◽  
François P. D. Delage

Increases in greenhouse gas emissions are expected to cause changes both in climatic variability in the Pacific linked to El Niño–Southern Oscillation (ENSO) and in long-term average climate. While mean state and variability changes have been studied separately, much less is known about their combined impact or relative importance. Additionally, studies of projected changes in ENSO have tended to focus on changes in, or adjacent to, the Pacific. Here we examine projected changes in climatic conditions during El Niño years and in ENSO-driven precipitation variability in 36 CMIP5 models. The models are forced according to the RCP8.5 scenario in which there are large, unmitigated increases in greenhouse gas concentrations during the twenty-first century. We examine changes over much of the globe, including 25 widely spread regions defined in the IPCC special report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). We confirm that precipitation variability associated with ENSO is projected to increase in the tropical Pacific, consistent with earlier research. We also find that the enhanced tropical Pacific variability drives ENSO-related variability increases in 19 SREX regions during DJF and in 18 during JJA. This externally forced increase in ENSO-driven precipitation variability around the world is on the order of 15%–20%. An increase of this size, although substantial, is easily masked at the regional level by internally generated multidecadal variability in individual runs. The projected changes in El Niño–driven precipitation variability are typically much smaller than projected changes in both mean state and ENSO neutral conditions in nearly all regions.


Sign in / Sign up

Export Citation Format

Share Document