Homogenization and trends analysis of the Belgian historical precipitation time series

Author(s):  
Cedric Bertrand ◽  
Romain Ingels ◽  
Michel Journée
2021 ◽  
Vol 24 ◽  
pp. 100618
Author(s):  
Philipe Riskalla Leal ◽  
Ricardo José de Paula Souza e Guimarães ◽  
Fábio Dall Cortivo ◽  
Rayana Santos Araújo Palharini ◽  
Milton Kampel

2016 ◽  
Vol 20 (4) ◽  
pp. 1387-1403 ◽  
Author(s):  
Hjalte Jomo Danielsen Sørup ◽  
Ole Bøssing Christensen ◽  
Karsten Arnbjerg-Nielsen ◽  
Peter Steen Mikkelsen

Abstract. Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman–Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km  ×  60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2304
Author(s):  
Manolis G. Grillakis ◽  
Christos Polykretis ◽  
Stelios Manoudakis ◽  
Konstantinos D. Seiradakis ◽  
Dimitrios D. Alexakis

We present and assess a method to estimate missing values in daily precipitation time series for the Mediterranean island of Crete. The method involves a quantile mapping methodology originally developed for the bias correction of climate models’ output. The overall methodology is based on a two-step procedure: (a) assessment of missing values from nearby stations and (b) adjustment of the biases in the probability density function of the filled values towards the existing data of the target. The methodology is assessed for its performance in filling-in the time series of a dense precipitation station network with large gaps on the island of Crete, Greece. The results indicate that quantile mapping can benefit the filled-in missing data statistics, as well as the wet day fraction. Conceptual limitations of the method are discussed, and correct methodology application guidance is provided.


Sign in / Sign up

Export Citation Format

Share Document