A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data

2021 ◽  
Vol 24 ◽  
pp. 100618
Author(s):  
Philipe Riskalla Leal ◽  
Ricardo José de Paula Souza e Guimarães ◽  
Fábio Dall Cortivo ◽  
Rayana Santos Araújo Palharini ◽  
Milton Kampel
1968 ◽  
Vol 8 (2) ◽  
pp. 308-309
Author(s):  
Mohammad Irshad Khan

It is alleged that the agricultural output in poor countries responds very little to movements in prices and costs because of subsistence-oriented produc¬tion and self-produced inputs. The work of Gupta and Majid is concerned with the empirical verification of the responsiveness of farmers to prices and marketing policies in a backward region. The authors' analysis of the respon¬siveness of farmers to economic incentives is based on two sets of data (concern¬ing sugarcane, cash crop, and paddy, subsistence crop) collected from the district of Deoria in Eastern U.P. (Utter Pradesh) a chronically foodgrain deficit region in northern India. In one set, they have aggregate time-series data at district level and, in the other, they have obtained data from a survey of five villages selected from 170 villages around Padrauna town in Deoria.


2018 ◽  
Vol 7 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Adekunlé Akim Salami ◽  
Ayité Sénah Akoda Ajavon ◽  
Mawugno Koffi Kodjo ◽  
Seydou Ouedraogo ◽  
Koffi-Sa Bédja

In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method (MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class (both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which eventually leads to a reduced processing time.Article History: Received February 16th 2018; Received in revised form May 5th 2018; Accepted May 27th 2018; Available onlineHow to Cite This Article: Salami, A.A., Ajavon, A.S.A., Kodjo, M.K. , Ouedraogo, S. and Bédja, K. (2018) The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. Int. Journal of Renewable Energy Development 7(2), 139-150.https://doi.org/10.14710/ijred.7.2.139-150


2021 ◽  
Vol 9 (1) ◽  
pp. 139-164
Author(s):  
Saddam Hussain ◽  
Chunjiao Yu

This paper explores the causal relationship between energy consumption and economic growth in Pakistan, applying techniques of co-integration and Hsiao’s version of Granger causality, using time series data over the period 1965-2019. Time series data of macroeconomic determi-nants – i.e. energy growth, Foreign Direct Investment (FDI) growth and population growth shows a positive correlation with economic growth while there is no correlation founded be-tween economic growth and inflation rate or Consumer Price Index (CPI). The general conclu-sion of empirical results is that economic growth causes energy consumption.


Author(s):  
Lihua Liu ◽  
Jing Huang ◽  
Huimin Wang

In the real decision-making process, there are so many time series values that need to be aggregated. In this paper, a visibility graph power geometric (VGPG) aggregation operator is developed, which is based on the complex network and power geometric operator. Time series data are converted into a visibility graph. A visibility matrix is developed to denote the links among different time series values. A new support function based on the distance of two values are proposed to measure the support degree of each other when the two time series values have visibility. The VGPG operator considers not only the relationship but also the similarity degree between two values. Meanwhile, some properties of the VGPG operator are also investigated. Finally, a case study for water, energy, and food coupling efficiency evaluation in China is illustrated to show the effectiveness of the proposed operator. Comparative analysis with the existing research is also offered to show the advantages of the proposed method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Dong-Rui Chen ◽  
Chuang Liu ◽  
Yi-Cheng Zhang ◽  
Zi-Ke Zhang

Understanding and predicting extreme turning points in the financial market, such as financial bubbles and crashes, has attracted much attention in recent years. Experimental observations of the superexponential increase of prices before crashes indicate the predictability of financial extremes. In this study, we aim to forecast extreme events in the stock market using 19-year time-series data (January 2000–December 2018) of the financial market, covering 12 kinds of worldwide stock indices. In addition, we propose an extremes indicator through the network, which is constructed from the price time series using a weighted visual graph algorithm. Experimental results on 12 stock indices show that the proposed indicators can predict financial extremes very well.


Sign in / Sign up

Export Citation Format

Share Document