Remote Forcing Effect of Sea Surface Temperatures in the Northern Tropical Atlantic on Tropical Cyclone Genesis over the Western North Pacific in July

Author(s):  
Xiaohui Shi ◽  
Yin Fang
SOLA ◽  
2012 ◽  
Vol 8 (0) ◽  
pp. 137-140 ◽  
Author(s):  
Satoru Yokoi ◽  
Chiharu Takahashi ◽  
Kazuaki Yasunaga ◽  
Ryuichi Shirooka

2018 ◽  
Vol 52 (7-8) ◽  
pp. 3845-3855 ◽  
Author(s):  
Jingliang Huangfu ◽  
Wen Chen ◽  
Maoqiu Jian ◽  
Ronghui Huang

2012 ◽  
Vol 140 (4) ◽  
pp. 1067-1080 ◽  
Author(s):  
Bing Fu ◽  
Melinda S. Peng ◽  
Tim Li ◽  
Duane E. Stevens

Global daily reanalysis fields from the Navy Operational Global Atmospheric Prediction System (NOGAPS) are used to analyze Northern Hemisphere summertime (June–September) developing and nondeveloping disturbances for tropical cyclone (TC) formation from 2003 to 2008. This is Part II of the study focusing on the western North Pacific (WNP), following Part I for the North Atlantic (NATL) basin. Tropical cyclone genesis in the WNP shows different characteristics from that in the NATL in both large-scale environmental conditions and prestorm disturbances. A box difference index (BDI) is used to identify parameters in differentiating between the developing and nondeveloping disturbances. In order of importance, they are 1) 800-hPa maximum relative vorticity, 2) rain rate, 3) vertically averaged horizontal shear, 4) vertically averaged divergence, 5) 925–400-hPa water vapor content, 6) SST, and 7) translational speed. The study indicates that dynamic variables are more important in TC genesis in the WNP, while in Part I of the study the thermodynamic variables are identified as more important in the NATL. The characteristic differences between the WNP and the NATL are compared.


Sign in / Sign up

Export Citation Format

Share Document