Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants

2009 ◽  
Vol 27 (10) ◽  
pp. 1353-1360 ◽  
Author(s):  
Christoph Erggelet ◽  
Michaela Endres ◽  
Katja Neumann ◽  
Lars Morawietz ◽  
Jochen Ringe ◽  
...  
2020 ◽  
Vol 8 (8) ◽  
pp. 232596712094531 ◽  
Author(s):  
Matthew J. Kraeutler ◽  
Gianna M. Aliberti ◽  
Anthony J. Scillia ◽  
Eric C. McCarty ◽  
Mary K. Mulcahey

Background: Microfracture (MFx) is one of the most common techniques used for the treatment of articular cartilage defects, although recently there has been a trend toward the use of drilling rather than MFx for the treatment of these defects. Purpose: To perform a systematic review of basic science studies to determine the effect of microfracture versus drilling for articular cartilage repair. Study Design: Systematic review. Methods: A systematic review was performed by searching PubMed, the Cochrane Library, and EMBASE to identify basic science studies comparing outcomes of MFx versus drilling. The search phrase used was microfracture AND (drilling OR microdrilling). Inclusion criteria were basic science studies that directly compared the effect of MFx versus drilling on subchondral bone, bone marrow stimulation, and cartilage regeneration. Results: A total of 7 studies met the inclusion criteria and were included in this systematic review. Of these, 4 studies were performed in rabbits, 1 study in sheep, and 2 studies in humans. All of the included studies investigated cartilage repair in the knee. In the animal studies, microfracture produced fractured and compacted bone and led to increased osteocyte necrosis compared with drilling. Deep drilling (6 mm) was superior to both shallow drilling (2 mm) and MFx in terms of increased subchondral hematoma with greater access to marrow stroma, improved cartilage repair, and increased mineralized bone. However, the overall quality of cartilage repair tissue was poor regardless of marrow stimulation technique. In 2 studies that investigated repair tissue after MFx and/or drilling in human patients with osteoarthritis and cartilage defects, the investigators found that cartilage repair tissue did not achieve the quality of normal hyaline articular cartilage. Conclusion: In the limited basic science studies that are available, deep drilling of cartilage defects in the knee resulted in improved biological features compared with MFx, including less damage to the subchondral bone and greater access to marrow stroma. Regardless of marrow stimulation technique, the overall quality of cartilage regeneration was poor and did not achieve the characteristics of native hyaline cartilage. Overall, there is a general lack of basic science literature comparing microfracture versus drilling for focal chondral defects.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Umile Giuseppe Longo ◽  
Stefano Petrillo ◽  
Edoardo Franceschetti ◽  
Alessandra Berton ◽  
Nicola Maffulli ◽  
...  

Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA). Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.


1998 ◽  
Vol 109 (4) ◽  
pp. 331-338 ◽  
Author(s):  
H. Nakajima ◽  
Tatsuhiko Goto ◽  
Osamu Horikawa ◽  
Toshiyuki Kikuchi ◽  
Masayuki Shinmei

Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


1999 ◽  
Vol 65 (5) ◽  
pp. 402-407 ◽  
Author(s):  
A. Carranza-Bencano ◽  
M. Perez-Tinao ◽  
P. Ballesteros-Vazquez ◽  
J. R. Armas-Padron ◽  
A. Hevia-Alonso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document