scholarly journals F-spondin regulates chondrocyte terminal differentiation and endochondral bone formation

2010 ◽  
Vol 28 (10) ◽  
pp. 1323-1329 ◽  
Author(s):  
Glyn D. Palmer ◽  
Alejandro H. Piton ◽  
Lwin Mon Thant ◽  
Serafim M. Oliveira ◽  
Marina D'Angelo ◽  
...  
2015 ◽  
Vol 30 (5) ◽  
pp. 765-774 ◽  
Author(s):  
Zhijun Chen ◽  
Susan X Yue ◽  
Guang Zhou ◽  
Edward M Greenfield ◽  
Shunichi Murakami

1999 ◽  
Vol 145 (4) ◽  
pp. 783-794 ◽  
Author(s):  
Rosa Serra ◽  
Andrew Karaplis ◽  
Philip Sohn

Previously, we showed that expression of a dominant-negative form of the transforming growth factor β (TGF-β) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-β in limiting terminal differentiation in vivo. Parathyroid hormone–related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-β and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-β inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-β1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-β in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-β acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-β has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Megan M. Simonds ◽  
Amanda R. Schlefman ◽  
Suzanne M. McCahan ◽  
Kathleen E. Sullivan ◽  
Carlos D. Rose ◽  
...  

Abstract Background We examined influences of conditioned media from chondrocytes (Ch) on juvenile idiopathic arthritis synovial fibroblasts (JFLS) and potential for JFLS to undergo endochondral bone formation (EBF). Methods Primary cells from three control fibroblast-like synoviocytes (CFLS) and three JFLS were cultured in Ch-conditioned media and compared with untreated fibroblast-like synoviocytes (FLS). RNA was analyzed by ClariomS microarray. FLS cells cultured in conditioned media were exposed to either TGFBR1 inhibitor LY3200882 or exogenous BMP4 and compared with FLS cultured in conditioned media from Ch (JFLS-Ch). Media supernatants were analyzed by ELISA. Results In culture, JFLS downregulate BMP2 and its receptor BMPR1a while upregulating BMP antagonists (NOG and CHRD) and express genes (MMP9, PCNA, MMP12) and proteins (COL2, COLX, COMP) associated with chondrocytes. Important TGFβ superfamily member gene expression (TGFBI, MMP9, COL1A1, SOX6, and MMP2) is downregulated when JFLS are cultured in Ch-conditioned media. COL2, COLX and COMP protein expression decreases in JFLS-Ch. BMP antagonist protein (NOG, CHRD, GREM, and FST) secretion is significantly increased in JFLS-Ch. Protein phosphorylation increases in JFLS-Ch exposed to exogenous BMP4, and chondrocyte-like phenotype is restored in BMP4 presence, evidenced by increased secretion of COL2 and COLX. Inhibition of TGFBR1 in JFLS-Ch results in overexpression of COL2. Conclusions JFLS are chondrocyte-like, and Ch-conditioned media can abrogate this phenotype. The addition of exogenous BMP4 causes JFLS-Ch to restore this chondrocyte-like phenotype, suggesting that JFLS create a microenvironment favorable for endochondral bone formation, thereby contributing to joint growth disturbances in juvenile idiopathic arthritis.


Development ◽  
2007 ◽  
Vol 134 (2) ◽  
pp. 307-316 ◽  
Author(s):  
C. J. Haycraft ◽  
Q. Zhang ◽  
B. Song ◽  
W. S. Jackson ◽  
P. J. Detloff ◽  
...  

2015 ◽  
Vol 30 (9) ◽  
pp. 1572-1584 ◽  
Author(s):  
Tao Wang ◽  
Yongmei Wang ◽  
Alicia Menendez ◽  
Chak Fong ◽  
Muriel Babey ◽  
...  

Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 127-140 ◽  
Author(s):  
Shaohong Cheng ◽  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Jan Schulte ◽  
Subburaman Mohan

Abstract The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice.


2007 ◽  
Vol 13 (8) ◽  
pp. 2011-2019 ◽  
Author(s):  
Jessica Shafer ◽  
Alan R. Davis ◽  
Francis H. Gannon ◽  
Christine M. Fouletier-Dilling ◽  
Zawaunyka Lazard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document