scholarly journals Optimizing a micro-computed tomography-based surrogate measurement of bone-implant contact

Author(s):  
Matthew J. Meagher ◽  
Rachna N. Parwani ◽  
Amarjit S. Virdi ◽  
Dale R. Sumner

2011 ◽  
Vol 245 (1) ◽  
pp. 34-42 ◽  
Author(s):  
S. LIU ◽  
J. BROUCEK ◽  
A. S. VIRDI ◽  
D. R. SUMNER




2015 ◽  
Vol 45 (1) ◽  
pp. 7 ◽  
Author(s):  
Sung-Won Kang ◽  
Woo-Jin Lee ◽  
Soon-Chul Choi ◽  
Sam-Sun Lee ◽  
Min-Suk Heo ◽  
...  


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 473 ◽  
Author(s):  
Naohiko Kawamura ◽  
Yuya Nakao ◽  
Rina Ishikawa ◽  
Dai Tsuchida ◽  
Masahiro Iijima

In current orthodontic practice, miniscrew implants (MSIs) for anchorage and bone fixation plates (BFPs) for surgical orthodontic treatment are commonly used. MSIs and BFPs that are made of bioabsorbable material would avoid the need for removal surgery. We investigated the mechanical, degradation and osseointegration properties and the bone-implant interface strength of the AZ31 bioabsorbable magnesium alloy to assess its suitability for MSIs and BFPs. The mechanical properties of a Ti alloy (TiA), AZ31 Mg alloy (MgA), pure Mg and poly-L-lactic acid (PLA) were investigated using a nanoindentation test. Also, pH changes in the solution and degradation rates were determined using immersion tests. Three-dimensional, high-resolution, micro-computed tomography (CT) of implants in the rat femur was performed. Biomechanical push-out testing was conducted to calculate the maximum shear strength of the bone-implant interface. Scanning electron microscopy (SEM), histological analysis and an evaluation of systemic inflammation were performed. MgA has mechanical properties similar to those of bone, and is suitable for implants. The degradation rate of MgA was significantly lower than that of Mg. MgA achieved a significantly higher bone-implant bond strength than TiA. Micro-CT revealed no significant differences in bone density or bone-implant contact between TiA and MgA. In conclusion, the AZ31 Mg alloy is suitable for both MSIs and BFPs.





2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  


2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.



2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document