Electrochemical in situ surface enhanced Raman spectroscopic characterization of a trinuclear ruthenium complex, Ru-red

2013 ◽  
Vol 44 (8) ◽  
pp. 1195-1199 ◽  
Author(s):  
Khurram Saleem Joya ◽  
Huub J. M. de Groot
RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60152-60159 ◽  
Author(s):  
Zhiyun Zhang ◽  
Huiyuan Guo ◽  
Yingqing Deng ◽  
Baoshan Xing ◽  
Lili He

A surface enhanced Raman spectroscopic (SERS) mapping technique was applied to qualitatively detect and characterize gold nanoparticles on and in spinach leaves in situ.


Author(s):  
Bao-Ying Wen ◽  
Qing-Qi Chen ◽  
Petar M. Radjenovic ◽  
Jin-Chao Dong ◽  
Zhong-Qun Tian ◽  
...  

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 93 ◽  
Author(s):  
István Rigó ◽  
Miklós Veres ◽  
Tamás Váczi ◽  
Eszter Holczer ◽  
Orsolya Hakkel ◽  
...  

A gold-coated array of flow-through inverse pyramids applicable as substrate for entrapment and immobilization of micro-objects and for surface enhanced Raman spectroscopic measurements was fabricated using bulk micromachining techniques from silicon. Surface morphology, optical reflectance, immobilization properties, and surface enhanced Raman amplification of the array were modelled and characterized. It was found that the special perforated periodic 3D structure can be used for parallel particle and cell trapping and highly sensitive molecular analysis of the immobilized objects.


Sign in / Sign up

Export Citation Format

Share Document