The role of a low molecular weight glutenin fraction in the cooking quality of durum wheat pasta

1989 ◽  
Vol 47 (4) ◽  
pp. 487-500 ◽  
Author(s):  
Kàroly Kobrehel ◽  
Rémi Alary
2012 ◽  
Vol 48 (No. 1) ◽  
pp. 23-32 ◽  
Author(s):  
I. Bellil ◽  
M. Chekara Bouziani ◽  
D. Khelifi

Saharan wheats have been studied particularly from a botanical viewpoint. Genotypic identification, classification and genetic diversity studies to date were essentially based on the morphology of the spike and grain. For this, the allelic variation at the glutenin loci was studied in a set of Saharan bread and durum wheats from Algerian oases where this crop has been traditionally cultivated. The high molecular weight and low molecular weight glutenin subunit composition of 40 Saharan bread and 30 durum wheats was determined by SDS-PAGE. In Saharan bread wheats 32 alleles at the six glutenin loci were detected, which in combination resulted in 36 different patterns including 17 for HMW and 23 for LMW glutenin subunits. For the Saharan durum wheats, 29 different alleles were identified for the five glutenin loci studied. Altogether, 29 glutenin patterns were detected, including 13 for HMW-GS and 20 for LMW-GS. Three new alleles were found in Saharan wheats, two in durum wheat at the Glu-B1 and Glu-B3 loci, and one in bread wheat at the Glu-B1 locus. The mean indices of genetic variation at the six loci in bread wheat and at the five loci in durum wheat were 0.59 and 0.63, respectively, showing that Saharan wheats were more diverse. This information could be useful to select Saharan varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.


1982 ◽  
Vol 243 (5) ◽  
pp. C212-C221 ◽  
Author(s):  
A. E. Pegg ◽  
P. P. McCann

Polyamines are ubiquitous organic cations of low molecular weight. The content of these amines is closely regulated by the cell according to the state of growth. The reactions responsible for the biosynthesis and interconversion of the polyamines and their precursor putrescine are described and the means by which polyamine content can be varied in response to exogenous stimuli are discussed. The role of polyamines in the cell cycle, cell division, tissue growth, and differentiation is considered. Recent studies using highly specific inhibitors of polyamine biosynthesis such as alpha-difluoromethylornithine to prevent accumulation of polyamines have indicated that the synthesis of polyamines is intimately associated with these processes. Such inhibitors have great potential for investigation of the cellular role of polyamines.


Sign in / Sign up

Export Citation Format

Share Document