scholarly journals Impact of pulse sequence, analysis method, and signal to noise ratio on the accuracy of intervertebral disc T 2 measurement

JOR Spine ◽  
2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Kyle D. Meadows ◽  
Curtis L. Johnson ◽  
John M. Peloquin ◽  
Richard G. Spencer ◽  
Edward J. Vresilovic ◽  
...  
2018 ◽  
Vol 42 (1) ◽  
pp. 167-174 ◽  
Author(s):  
V. I. Parfenov ◽  
D. Y. Golovanov

An algorithm for estimating time positions and amplitudes of a periodic pulse sequence from a small number of samples was proposed. The number of these samples was determined only by the number of pulses. The performance of this algorithm was considered on the assumption that the spectrum of the original signal is limited with an ideal low-pass filter or the Nyquist filter, and conditions for the conversion from one filter to the other were determined. The efficiency of the proposed algorithm was investigated through analyzing in which way the dispersion of estimates of time positions and amplitudes depends on the signal-to-noise ratio and on the number of pulses in the sequence. It was shown that, from this point of view, the efficiency of the algorithm decreases with increasing number of sequence pulses. Besides, the efficiency of the proposed algorithm decreases with decreasing signal-to-noise ratio.It was found that, unlike the classical maximum likelihood algorithm, the proposed algorithm does not require a search for the maximum of a multivariable function, meanwhile characteristics of the estimates are practically the same for both these methods. Also, it was shown that the estimation accuracy of the proposed algorithm can be increased by an insignificant increase in the number of signal samples.The results obtained may be used in the practical design of laser communication systems, in which the multipulse pulse-position modulation is used for message transmission. 


2017 ◽  
Vol 88 ◽  
pp. 340-347
Author(s):  
Sheng Wang ◽  
Hang Li ◽  
Chao Cao ◽  
Yang Wu ◽  
Heyong Huo ◽  
...  

2019 ◽  
Vol 27 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Mahdi Saeedi-Moghadam ◽  
Majid Pouladian ◽  
Reza Faghihi ◽  
Mehrzad Lotfi

Author(s):  
W. X. Er ◽  
W. J. Lim ◽  
Y. Dwihapsari ◽  
M. N. A. Awang ◽  
A. N. Yusoff

Abstract Background Agar has been commonly used as one of the materials to fabricate magnetic resonance imaging phantoms in the past few decades. In this study, eleven agar gel phantoms with different iron (III) oxide (Fe2O3) masses were prepared. This study was aimed to evaluate the signal-to-noise ratio (SNR) uniformity and stability of agar gel phantoms with and without the addition of Fe2O3 at two different time points (TPs). Fe2O3 powder was used as a relaxation modifier to manipulate and produce various SNR, T1 and T2 values. These phantoms were scanned using turbo spin echo pulse sequence to produce T1- and T2-measurement images. The SNR was then computed by plotting 1, 3 and 25 regions of interest on the images using ImageJ software. The T1 and T2 relaxation equations were then fitted to the experimental results of SNR versus TR and SNR versus TE curves for the determination of saturation (SNRo), T1 and T2 values. Results The results demonstrated that the agar gel phantoms were able to maintain SNR uniformity but not SNR stability after 4 weeks of phantom preparation. The change in the water content and microstructure of the phantoms have no significant effect on T2 relaxation but on T1 relaxation. The T1 and T2 of the agar gel phantoms were minimally affected although there was a systemic increase in the content of the Fe2O3 powder. Conclusions It can be concluded that the agar gel phantoms exhibited the characteristics of SNR uniformity, but they showed instability of SNR at TP2. The Fe2O3 in powder form is not an effective relaxation modifier to reduce the T1 and T2 when it is introduced into the agar gel phantoms. Dissolved nanosized particles should be the focus of future studies.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


Sign in / Sign up

Export Citation Format

Share Document