The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies

2015 ◽  
Vol 26 (6) ◽  
pp. 604-612 ◽  
Author(s):  
Tamás Lassu ◽  
Manuel Seeger ◽  
Piet Peters ◽  
Saskia D. Keesstra
2016 ◽  
Vol 5 (2) ◽  
pp. 133-142 ◽  
Author(s):  
Jin Kwan Kim ◽  
Min Seok Kim ◽  
Min Han ◽  
Dong-Yoon Yang

2021 ◽  
Author(s):  
Romana Kubínová ◽  
Petr Kavka ◽  
Martin Neumann ◽  
Jan-František Kubát

<p>In this contribution the particle size distributions of the soil sediment obtained from soil erosion experiments were analysed. All the tests were done on arable topsoil’s, separately the size distribution of the soil aggregates and individual soil particles were evaluated. Soil erosion was initiated under the controlled conditions. CTU Prague laboratory rainfall simulator and field laboratory in Jirkov were used for this research. The rainfall was artificially generated with use of a nozzle type rainfall simulator. The sediment transported due to the surface runoff and rill erosion was collected from the discharge of the inclined soil erosion plots (slopes 20 – 34°, slope length 4 m).<br>During each experiment, eight samples were collected. Four samples were collected during the first experimental rainfall. For the next ten days, the container was kept aside the rainfall. Afterwards, the raining with the rainfall simulator on plot (which now had different initial condition compared to the plot during the first experimental rainfall as the plot already contained erosion rills from the previous episode) has been resumed and another four samples were collected.<br>Experimental plots were vertically divided into two parts. On one part was an eel and on the second part were different types of rolled erosion control products (RECPs) – Enkamat 7010, and 7020, Biomac-C, coir fibres K700 and K400, jute, Macmat 8.1, mulch, hay, nonwoven, fortrac 3D and triangle. The influence of RECPs to the particle size distribution was investigated.<br>Laser diffraction has been selected as a method to determine particle size distribution and device Mastersizer 3000 was used. By the comparison of the particle size distribution, of more than five hundred samples, the different response to the soil erosion mechanism and the influence of external factors (slope of the experimental plot, initial condition and presence of RECPs) on the particle size distribution and soil aggregates content in eroded sediment were investigated. It has been found that both the particle size and aggregates size distribution of the eroded sediment changes considerably in time.<br>This research is funded by the TH02030428 - „Design of technical measures for slopes stabilization and soil erosion prevention” and by the International CTU grant SGS20/156/OHK1/3T/11.</p>


CATENA ◽  
2014 ◽  
Vol 113 ◽  
pp. 353-362 ◽  
Author(s):  
Haytham M. Salem ◽  
Constantino Valero ◽  
Miguel Ángel Muñoz ◽  
María Gil-Rodríguez ◽  
Pilar Barreiro

Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 1 ◽  
Author(s):  
B. Yu ◽  
C. W. Rose

When physically based erosion models such as GUEST are used to determine soil erodibility parameters or to predict the rate of soil loss, data on runoff rates, as distinct from event runoff amount, are often needed. Data on runoff rates, however, are not widely available. This paper describes methods that can be used to overcome this lack of data on runoff rates. These methods require only rainfall rates and runoff amounts, which are usually available for sites set up primarily to test and validate the USLE technology. In addition, the paper summarises the data requirements for the erosion model GUEST and application procedures. In the accompanying paper, these methods are applied to 4 experimental sites in the ASIALAND Network.


Author(s):  
Claudia Sangüesa ◽  
José Arumí ◽  
Roberto Pizarro ◽  
Oscar Link

2020 ◽  
Vol 145 ◽  
pp. 02022
Author(s):  
Zhang Dong ◽  
Shao Shegang ◽  
Ni Dong ◽  
Wang Jian

In this study, a typical spoil ground was selected in the test area, and runoff plots were set up. Through rainfall tests and statistical analysis of the data, the soil erosion law of the spoil ground was studied. The results show that under different rainfall intensities, the soil bulk density is positive to the runoff rate. Correlation indicates that the increase of soil bulk density and runoff rate increase; the increase of soil bulk density increases the soil’s impact resistance, and the erosion rate decreases with the increase of bulk density.


2020 ◽  
Author(s):  
Chengzhong Pan ◽  
Lan Ma

<p>The aim of this study was to investigate how the spatial distribution of grass influenced run-off and erosion from a hillslope with loess and cinnamon soils in the rocky area of Northern China. We set up a trial to test the two soils with different treatments, including bare soil (BS), grass strips on the upper (UGS) and lower (DGS) parts of the slope, grass cover over the entire slope (GS), and a grass carpet on the lower part of the slope (GC), under simulated rainfall conditions. The results showed that the run-off coefficients for the loess and cinnamon soils decreased by between 4% and 20% and by between 2% and 37%, respectively, when covered with grass. Grass spatial distribution had little effect on the run-off, but more effect on erosion than vegetation coverage degree. The most effective location of grass cover for decreasing hillslope erosion was at the foot, and the high efficiency was mainly due to controlling of rill formation and sediment deposition. The soil loss from GS, DGS, and GC on the loess and cinnamon soils was between 77% and 93% less and 55% and 80% less, respectively, compared with the loss from BS. However, the soil characteristics had little effect on soil erosion for well-vegetated slopes. The results highlight the importance of vegetation re-establishment at the foot of hillslope in controlling soil erosion.</p>


CATENA ◽  
2016 ◽  
Vol 140 ◽  
pp. 77-89 ◽  
Author(s):  
Marco Lora ◽  
Matteo Camporese ◽  
Paolo Salandin

Sign in / Sign up

Export Citation Format

Share Document