scholarly journals Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification

2015 ◽  
Vol 60 (3) ◽  
pp. 777-788 ◽  
Author(s):  
Emily C. Shaw ◽  
Stuart R. Phinn ◽  
Bronte Tilbrook ◽  
Andy Steven



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Steve S. Doo ◽  
Peter J. Edmunds ◽  
Robert C. Carpenter


2014 ◽  
Vol 11 (10) ◽  
pp. 2857-2869 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide the first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population, even in the highly alkaline Mediterranean Sea.



2021 ◽  
Vol 118 (21) ◽  
pp. e2015265118
Author(s):  
Christopher E. Cornwall ◽  
Steeve Comeau ◽  
Niklas A. Kornder ◽  
Chris T. Perry ◽  
Ruben van Hooidonk ◽  
...  

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world’s coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.



2021 ◽  
Vol 172 ◽  
pp. 105490
Author(s):  
Caroline B. Randi ◽  
Ana Clara Becker ◽  
Maria Julia Willemes ◽  
Chris T. Perry ◽  
Leonardo Tavares Salgado ◽  
...  


2017 ◽  
Vol 201 ◽  
pp. 88-98 ◽  
Author(s):  
Sarah M. Hamylton ◽  
Stephanie Duce ◽  
Ana Vila-Concejo ◽  
Chris M. Roelfsema ◽  
Stuart R. Phinn ◽  
...  


Science ◽  
1976 ◽  
Vol 194 (4268) ◽  
pp. 937-939 ◽  
Author(s):  
S. V. SMITH ◽  
D. W. KINSEY


2013 ◽  
Vol 10 (12) ◽  
pp. 19701-19730 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will overwhelm the capacity of the surface ocean reservoirs to absorb carbon. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect the global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the worlds' oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12 yr sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial Holocene and industrial 20th century values recorded in the sedimentary record, and (2) seasonal variability in coccolith weight that is linked to the coccolithophore production. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population even in the highly alkaline Mediterranean Sea.



2014 ◽  
Vol 281 (1790) ◽  
pp. 20141339 ◽  
Author(s):  
S. Comeau ◽  
R. C. Carpenter ◽  
Y Nojiri ◽  
H. M. Putnam ◽  
K. Sakai ◽  
...  

Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO 2 ( p CO 2 ) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high p CO 2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa ( Pocillopora damicornis and massive Porites ) and two calcified algae ( Porolithon onkodes and Halimeda macroloba ) under 400, 700 and 1000 μatm p CO 2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high p CO 2 , but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific.



Sign in / Sign up

Export Citation Format

Share Document