Colonization dynamics of the invasive predatory cladoceran, Bythotrephes longimanus , inferred from sediment records

2017 ◽  
Vol 62 (3) ◽  
pp. 1096-1110 ◽  
Author(s):  
Donn K. Branstrator ◽  
Ashley E. Beranek ◽  
Meghan E. Brown ◽  
Leif K. Hembre ◽  
Daniel R. Engstrom
2004 ◽  
Vol 61 (11) ◽  
pp. 2111-2125 ◽  
Author(s):  
Richard P Barbiero ◽  
Marc L Tuchman

The crustacean zooplankton communities in Lakes Michigan and Huron and the central and eastern basins of Lake Erie have shown substantial, persistent changes since the invasion of the predatory cladoceran Bythotrephes in the mid-1980s. A number of cladoceran species have declined dramatically since the invasion, including Eubosmina coregoni, Holopedium gibberum, Daphnia retrocurva, Daphnia pulicaria, and Leptodora kindti, and overall species richness has decreased as a result. Copepods have been relatively unaffected, with the notable exception of Meso cyclops edax, which has virtually disappeared from the lakes. These species shifts have for the most part been consistent and equally pronounced across all three lakes. Responses of crustacean species to the Bythotrephes invasion do not appear to be solely a consequence of size, and it is likely that other factors, e.g., morphology, vertical distribution, or escape responses, are important determinants of vulnerability to predation. Our results indicate that invertebrate predators in general, and invasive ones in particular, can have pronounced, lasting effects on zooplankton community structure.


2013 ◽  
Vol 58 (9) ◽  
pp. 1946-1957 ◽  
Author(s):  
Anneli Jokela ◽  
Shelley E. Arnott ◽  
Beatrix E. Beisner

2017 ◽  
Vol 74 (6) ◽  
pp. 824-832 ◽  
Author(s):  
Michael L. Sorensen ◽  
Donn K. Branstrator

The predatory cladoceran Bythotrephes longimanus (spiny water flea) has been invading lakes and damaging food webs across the central part of North America since the early 1980s. To understand its niche and that of the taxonomically related and native predatory cladoceran Leptodora kindtii, we investigated species survival after 12 h exposures to low dissolved oxygen (DO) concentrations in the laboratory. Bythotrephes longimanus (n = 690) exhibited a hypoxia tolerance limit (LC50) of 1.65 mg·L−1 DO (95% confidence interval: 1.59, 1.72 mg·L−1) and was significantly less tolerant of hypoxia than L. kindtii (n = 380), which exhibited an LC50 of 0.58 mg·L−1 DO (0.51, 0.65 mg·L−1). These lab-based physiological results are consistent with landscape-scale observations that B. longimanus successfully invades primarily mesotrophic and oligotrophic lakes, while L. kindtii inhabits a wider range of lakes that includes eutrophic ones. Climate change throughout the 21st century may increase the occurrence and severity of hypoxia in the hypolimnia of lakes and may provide a growing barrier to B. longimanus invasion.


Author(s):  
Jorge Arroyo-Esquivel ◽  
Nathan G. Marculis ◽  
Alan Hastings

AbstractOne of the main factors that determines habitat suitability for sessile and territorial organisms is the presence or absence of another competing individual in that habitat. This type of competition arises in populations occupying patches in a metacommunity. Previous studies have looked at this process using a continuous-time modeling framework, where colonizations and extinctions occur simultaneously. However, different colonization processes may be performed by different species, which may affect the metacommunity dynamics. We address this issue by developing a discrete-time framework that describes these kinds of metacommunity interactions, and we consider different colonization dynamics. To understand potential dynamics, we consider specific functional forms that characterize the colonization and extinction processes of metapopulations competing for space as their limiting factor. We then provide a mathematical analysis of the models generated by this framework, and we compare these results to what is seen in nature and in previous models.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Julia Lanner ◽  
Fabian Gstöttenmayer ◽  
Manuel Curto ◽  
Benoît Geslin ◽  
Katharina Huchler ◽  
...  

Abstract Background Invasive species are increasingly driving biodiversity decline, and knowledge of colonization dynamics, including both drivers and dispersal modes, are important to prevent future invasions. The bee species Megachile sculpturalis (Hymenoptera: Megachilidae), native to East-Asia, was first recognized in Southeast-France in 2008, and has since spread throughout much of Europe. The spread is very fast, and colonization may result from multiple fronts. Result To track the history of this invasion, codominant markers were genotyped using Illumina sequencing and the invasion history and degree of connectivity between populations across the European invasion axis were investigated. Distinctive genetic clusters were detected with east–west differentiations in Middle-Europe. Conclusion We hypothesize that the observed cluster formation resulted from multiple, independent introductions of the species to the European continent. This study draws a first picture of an early invasion stage of this wild bee and forms a foundation for further investigations, including studies of the species in their native Asian range and in the invaded range in North America.


Sign in / Sign up

Export Citation Format

Share Document