Misalignment effects on steady‐state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids

10.1002/ls.65 ◽  
2008 ◽  
Vol 20 (3) ◽  
pp. 241-268 ◽  
Author(s):  
Hamid Boucherit ◽  
Mustapha Lahmar ◽  
Benyebka Bou‐Said
1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


2011 ◽  
Vol 66 (8-9) ◽  
pp. 512-518 ◽  
Author(s):  
Jaw-Ren Lin ◽  
Li-Ming Chu ◽  
Chi-Ren Hung ◽  
Rong-Fang Lu

Abstract According to the experimental work of C. Barus in Am. J. Sci. 45, 87 (1893) [1], the dependency of liquid viscosity on pressure is exponential. Therefore, we extend the study of squeeze film problems of long partial journal bearings for Stokes non-Newtonian couple stress fluids by considering the pressure-dependent viscosity in the present paper. Through a small perturbation technique, we derive a first-order closed-form solution for the film pressure, the load capacity, and the response time of partial-bearing squeeze films. It is also found that the non-Newtonian couple-stress partial bearings with pressure-dependent viscosity provide better squeeze-film characteristics than those of the bearing with constant-viscosity situation.


Author(s):  
Mahdi Zare Mehrjardi

In this research, the steady state and dynamic performances of two-lobe noncircular journal bearings with couple stress lubricant are presented. The lubricating oil, containing additives and contaminants, is modeled as the couple stress fluid. The modified Reynolds equation is obtained using the couple stress lubrication theory and is then solved by finite element method as an efficient numerical technique. The steady-state characteristics of bearings, including the load carrying capacity and attitude angle, are determined for various values of the couple stress parameter. The results show that applying the couple stress fluid improves the efficiency of two-lobe bearings in terms of an increased load carrying capacity and reduced attitude angle. Also, the stability performance of the investigated bearings is studied using rotor motion equations based on linear and nonlinear dynamic methods. The results indicate that any increase in the lubricant couple stress parameter enhances the bearing ability to damp the rotor perturbations. In other words, by varying the lubricant from Newtonian oil to the couple stress type and upgrading its properties, the curves of the critical mass parameter and whirl frequency ratio have an increasing and decreasing trend, respectively. Based on the fourth-order Runge–Kutta method results, the dynamic trajectory of the rotor center in the bearing space changes with increasing the couple stress parameter from diverging disturbances and limits the cycle perturbations around the bearing center to converging oscillations to the static equilibrium point. Moreover, the effect of changing lubricant properties on the two-lobe bearing’s performance is more pronounced at higher values of the couple stress parameter, especially with an increase in the noncircularity of bearings’ geometry.


2001 ◽  
Vol 34 (5) ◽  
pp. 335-343 ◽  
Author(s):  
Xiao-Li Wang ◽  
Ke-Qin Zhu ◽  
Shi-Zhu Wen

Sign in / Sign up

Export Citation Format

Share Document