Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids

1997 ◽  
Vol 30 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Jaw Ren Lin
Author(s):  
J-R Lin

The derivation of non-Newtonian squeeze-film Reynolds-type equation between two convex surfaces and its application are of interest in the present study. Based upon the Stokes micro-continuum theory, the non-Newtonian squeeze-film Reynolds-type equation between two convex surfaces is derived to take into account the effects of couple stresses resulting from the lubricant blended with various additives. This non-Newtonian squeeze-film Reynolds-type equation is applicable to squeeze-film bearings lubricated with couple stress fluids when the general upper film shape and the lower film shape are specified. To guide the use of the equation, the squeeze-film mechanism between two different cylinders of infinite width with non-Newtonian couple stress fluids is illustrated. Comparing with the Newtonian-lubricant case, the presence of non-Newtonian couple stresses provides an increase in the load-carrying capacity, and therefore lengthens the approaching time. In addition, the effects of couple stresses on the squeeze film characteristics are more pronounced at lower squeeze-film height with larger couple stress parameters and larger radius ratios of cylinders. As the value of radius ratio approaches infinity, the present results agree closely with those of the previous studies by Hamrock [6] and by Lin et al. [19], respectively; it provides a support to the present study.


2011 ◽  
Vol 66 (8-9) ◽  
pp. 512-518 ◽  
Author(s):  
Jaw-Ren Lin ◽  
Li-Ming Chu ◽  
Chi-Ren Hung ◽  
Rong-Fang Lu

Abstract According to the experimental work of C. Barus in Am. J. Sci. 45, 87 (1893) [1], the dependency of liquid viscosity on pressure is exponential. Therefore, we extend the study of squeeze film problems of long partial journal bearings for Stokes non-Newtonian couple stress fluids by considering the pressure-dependent viscosity in the present paper. Through a small perturbation technique, we derive a first-order closed-form solution for the film pressure, the load capacity, and the response time of partial-bearing squeeze films. It is also found that the non-Newtonian couple-stress partial bearings with pressure-dependent viscosity provide better squeeze-film characteristics than those of the bearing with constant-viscosity situation.


2006 ◽  
Vol 58 (4) ◽  
pp. 176-186 ◽  
Author(s):  
N.M. Bujurke ◽  
N.B. Naduvinamani ◽  
Syeda Tasneem Fathima ◽  
S.S. Benchalli

Sign in / Sign up

Export Citation Format

Share Document