scholarly journals Combined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffolds

2010 ◽  
Vol 10 (11) ◽  
pp. 1330-1337 ◽  
Author(s):  
Maxime D. Guillemette ◽  
Hyoungshin Park ◽  
James C. Hsiao ◽  
Saloni R. Jain ◽  
Benjamin L. Larson ◽  
...  
2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ivan Batalov ◽  
Quentin Jallerat ◽  
Adam W Feinberg

The engineering of highly aligned cardiomyocytes into functional heart muscle remains a primary challenge in cardiac tissue engineering. Researchers have shown that micropatterned topography and chemistry as well as mechanical and electrical gradients are all effective at inducing some degree of alignment. However, which approach works best in terms of electromechanical function of the engineered cardiac muscle is still an active area of research. Because formation of new heart muscle in mammals primarily occurs during cardiogenesis, we asked whether the embryonic heart could be used as an instructive template for the design of more effective cardiac tissue engineering scaffolds. Specifically, we hypothesized that micropatterns of fibronectin based on fibronectin fibril size and architecture in embryonic myocardium could improve cardiomyocyte alignment relative to 20 μm wide, 20 μm spaced fibronectin lines, a control pattern used widely in the literature. To test this, we first imaged the fibronectin matrix in the ventricles of day-5 embryonic chick hearts and imaged this in 3D using a multiphoton microscope. This fibronectin structure was then converted into a photomask for photolithography and subsequent patterning of fibronectin onto cover slips using microcontact printing. Samples with the biomimetic patterns or control patterns were seeded with embryonic chick cardiomyocytes, cultured for 3 days and then stained and imaged to visualize the myofibrils. Image analysis to quantify alignment showed that the ability of the biomimetic pattern to induce cardiomyocyte alignment increased with cell density, suggesting that cell-cell interactions play an important role in the formation of aligned embryonic myocardium. Disruption of the cadherins junctions using blocking antibodies confirmed this conclusion. In the future we will use human induced pluripotent stem cell-derived cardiomyocytes to engineer more clinically-relevant human heart muscle and analyze electromechanical function of the tissues including contractile force and action potential propagation.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 914
Author(s):  
Arsalan Ul Haq ◽  
Felicia Carotenuto ◽  
Paolo Di Nardo ◽  
Roberto Francini ◽  
Paolo Prosposito ◽  
...  

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.


2021 ◽  
pp. 100114
Author(s):  
Tilman U. Esser ◽  
Vanessa T. Trossmann ◽  
Sarah Lentz ◽  
Felix B. Engel ◽  
Thomas Scheibel

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Magali Seguret ◽  
Eva Vermersch ◽  
Charlène Jouve ◽  
Jean-Sébastien Hulot

Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


Biomaterials ◽  
2014 ◽  
Vol 35 (30) ◽  
pp. 8540-8552 ◽  
Author(s):  
H. Gözde Şenel Ayaz ◽  
Anat Perets ◽  
Hasan Ayaz ◽  
Kyle D. Gilroy ◽  
Muthu Govindaraj ◽  
...  

2021 ◽  
pp. 088532822110185
Author(s):  
Yuksel Cetin ◽  
Merve G Sahin ◽  
Fatma N Kok

Cardiac tissue engineering focusing on biomaterial scaffolds incorporating cells from different sources has been explored to regenerate or repair damaged area as a lifesaving approach.The aim of this study was to evaluate the cardiomyocyte differentiation potential of human adipose mesenchymal stem cells (hAD-MSCs) as an alternative cell source on silk fibroin (SF) scaffolds for cardiac tissue engineering. The change in surface morphology of SF scaffolds depending on SF concentration (1–6%, w/v) and increase in their porosity upon application of unidirectional freezing were visualized by scanning electron microscopy (SEM). Swelling ratio was found to increase 2.4 fold when SF amount was decreased from 4% to 2%. To avoid excessive swelling, 4% SF scaffold with swelling ratio of 10% (w/w) was chosen for further studies.Biodegradation rate of SF scaffolds depended on enzymatic activity was found to be 75% weight loss of SF scaffolds at the day 14. The phenotype of hAD-MSCs and their multi-linage potential into chondrocytes, osteocytes, and adipocytes were shown by flow cytometry and immunohistochemical staining, respectively.The viability of hAD-MSCs on 3D SF scaffolds was determined as 90%, 118%, and 138% after 1, 7, and 14 days, respectively. The use of 3D SF scaffolds was associated with increased production of cardiomyogenic biomarkers: α-actinin, troponin I, connexin 43, and myosin heavy chain. The fabricated 3D SF scaffolds were proved to sustain hAD-MSCs proliferation and cardiomyogenic differentiation therefore, hAD-MSCs on 3D SF scaffolds may useful tool to regenerate or repair damaged area using cardiac tissue engineering techniques.


2021 ◽  
Vol 6 (7) ◽  
pp. 2000-2010
Author(s):  
Yutong He ◽  
Honghao Hou ◽  
Shuqi Wang ◽  
Rurong Lin ◽  
Leyu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document