biomaterial scaffolds
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 72)

H-INDEX

29
(FIVE YEARS 7)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 266
Author(s):  
Valentina Russo ◽  
Mohammad El Khatib ◽  
Giuseppe Prencipe ◽  
Adrián Cerveró Varona ◽  
Maria Rita Citeroni ◽  
...  

Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.


2021 ◽  
Vol 7 (4) ◽  
pp. 1-3
Author(s):  
Yehonatan Zur ◽  
◽  
Tzila Davidov ◽  
Limor Baruch ◽  
Marcelle Machluf ◽  
...  

Aiming to restore the normal function of diseased or injured tissues, regenerative therapy approaches are generally based on the engineering of complex tissue-mimicking grafts, encompassing biomaterial scaffolds, stem cells, or their combinations [1-4]. Due to the major role of stem cells in physiological regenerative mechanisms, regenerative therapies normally rely on either stem cells transplantation or stem cell recruitment from the neighboring tissue into the implanted scaffold


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaotong Zhao ◽  
Qiong Li ◽  
Zhikun Guo ◽  
Zongjin Li

AbstractStem cell therapy is widely recognized as a promising strategy for exerting therapeutic effects after injury in degenerative diseases. However, limitations such as low cell retention and survival rates after transplantation exist in clinical applications. In recent years, emerging biomaterials that provide a supportable cellular microenvironment for transplanted cells have optimized the therapeutic efficacy of stem cells in injured tissues or organs. Advances in the engineered microenvironment are revolutionizing our understanding of stem cell-based therapies by co-transplanting with synthetic and tissue-derived biomaterials, which offer a scaffold for stem cells and propose an unprecedented opportunity to further employ significant influences in tissue repair and regeneration.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1731
Author(s):  
Delfo D’Alessandro ◽  
Claudio Ricci ◽  
Mario Milazzo ◽  
Giovanna Strangis ◽  
Francesca Forli ◽  
...  

The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.


2021 ◽  
pp. 2102698
Author(s):  
Quinton Smith ◽  
Jennifer Bays ◽  
Linqing Li ◽  
Haniyah Shareef ◽  
Christopher S. Chen ◽  
...  

Author(s):  
Zhuowen Hao ◽  
Zhenhua Xu ◽  
Xuan Wang ◽  
Yi Wang ◽  
Hanke Li ◽  
...  

The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1336
Author(s):  
Olja Mijanović ◽  
Timofey Pylaev ◽  
Angelina Nikitkina ◽  
Margarita Artyukhova ◽  
Ana Branković ◽  
...  

Nowadays, tissue engineering is one of the most promising approaches for the regeneration of various tissues and organs, including the cornea. However, the inability of biomaterial scaffolds to successfully integrate into the environment of surrounding tissues is one of the main challenges that sufficiently limits the restoration of damaged corneal tissues. Thus, the modulation of molecular and cellular mechanisms is important and necessary for successful graft integration and long-term survival. The dynamics of molecular interactions affecting the site of injury will determine the corneal transplantation efficacy and the post-surgery clinical outcome. The interactions between biomaterial surfaces, cells and their microenvironment can regulate cell behavior and alter their physiology and signaling pathways. Nanotechnology is an advantageous tool for the current understanding, coordination, and directed regulation of molecular cell–transplant interactions on behalf of the healing of corneal wounds. Therefore, the use of various nanotechnological strategies will provide new solutions to the problem of corneal allograft rejection, by modulating and regulating host–graft interaction dynamics towards proper integration and long-term functionality of the transplant.


Author(s):  
He Liu ◽  
Jing Lu ◽  
Qianzhou Jiang ◽  
Markus Haapasalo ◽  
Junrong Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document