fibrotic scar
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 60)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 17 (2) ◽  
pp. 362
Author(s):  
Yi Li ◽  
Jian Wu ◽  
Zhen-Yu Zhu ◽  
Zhi-Wei Fan ◽  
Ying Chen ◽  
...  

2021 ◽  
pp. 019262332110679
Author(s):  
Yuval Ramot ◽  
Serge Rousselle ◽  
Michal Steiner ◽  
Yossi Lavie ◽  
Nati Ezov ◽  
...  

One of the challenging aspects of minimal invasive surgery (MIS) is intracorporal suturing, which can be significantly time-consuming. Therefore, there is a rising need for devices that can facilitate the suturing procedure in MIS. Su2ura Approximation Device (Su2ura Approximation) is a novel device developed to utilize the insertion of anchors threaded with stitches to allow a single action placement of a suture. The objective of this study was to evaluate the long-term safety and tissue approximation of Su2ura Approximation in comparison to Endo Stitch + Surgidac sutures in female domestic pigs. All incision sites were successfully closed by both methods. Firm consolidation within and around the incision site was noted in several animals in both treatment groups, which corresponded histopathologically to islands of ectopic cartilage or bone spicules within the fibrotic scar. These changes reflect heterotopic ossification that is commonly seen in the healing of abdominal operation sites in pigs. No other abnormal findings were observed throughout the study period. In conclusion, the use of Su2ura Approximation under the present experimental conditions revealed no safety concerns.


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Adwiteeya Misra ◽  
Cameron D. Baker ◽  
Elizabeth M. Pritchett ◽  
Kimberly N. Burgos Villar ◽  
John M. Ashton ◽  
...  

The neonatal mammalian heart exhibits a remarkable regenerative potential, which includes fibrotic scar resolution and the generation of new cardiomyocytes. To investigate the mechanisms facilitating heart repair after apical resection in neonatal mice, we conducted bulk and spatial transcriptomic analyses at regenerative and non-regenerative timepoints. Importantly, spatial transcriptomics provided near single-cell resolution, revealing distinct domains of atrial and ventricular myocardium that exhibit dynamic phenotypic alterations during postnatal heart maturation. Spatial transcriptomics also defined the cardiac scar, which transitions from a proliferative to secretory phenotype as the heart loses regenerative potential. The resolving scar is characterized by spatially and temporally restricted programs of inflammation, epicardium expansion and extracellular matrix production, metabolic reprogramming, lipogenic scar extrusion, and cardiomyocyte restoration. Finally, this study revealed the emergence of a regenerative border zone defined by immature cardiomyocyte markers and the robust expression of Sprr1a. Taken together, our study defines the spatially and temporally restricted gene programs that underlie neonatal heart regeneration and provides insight into cardio-restorative mechanisms supporting scar resolution.


2021 ◽  
Author(s):  
Ron Carmel Vinestock ◽  
Neta Felsenthal ◽  
Eran Assaraf ◽  
Eldad Katz ◽  
Sarah Rubin ◽  
...  

Wound healing is a well-orchestrated process that typically recruits the immune and vascular systems to restore the structure and function of the injured tissue. Injuries to the enthesis, a hypocellular and avascular tissue, often result in fibrotic scar formation and loss of mechanical properties, thereby severely affecting musculoskeletal function and life quality. This raises questions about the healing capabilities of the enthesis. Here, we established an injury model to the Achilles entheses of neonatal mice to study the possibility that at an early age, the enthesis can heal more effectively. Histology and immunohistochemistry analyses revealed an atypical process that did not involve inflammation or angiogenesis. Instead, neonatal enthesis healing was mediated by secretion of collagen types I and II by resident cells, which formed a permanent hypocellular and avascular scar. Transmission electron microscopy showed that the cellular response to injury, including ER stress, autophagy and cell death, varied between the tendon and cartilage ends of the enthesis. Single-molecule in situ hybridization, immunostaining, and TUNEL assays verified these differences. Finally, gait analysis showed that these processes effectively restored function of the injured leg. Collectively, these findings reveal a novel healing mechanism in neonatal entheses, whereby local ECM secretion by resident cells forms an acellular ECM deposit in the absence of inflammation markers, allowing gait restoration. These insights into the healing mechanism of a complex transitional tissue may lead to new therapeutic strategies for adult enthesis injuries.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1892
Author(s):  
Tatsuyuki Ishii ◽  
Ikkei Takashimizu ◽  
Martin Miguel Casco-Robles ◽  
Yuji Taya ◽  
Shunsuke Yuzuriha ◽  
...  

In surgical and cosmetic studies, scarless regeneration is an ideal method to heal skin wounds. To study the technologies that enable scarless skin wound healing in medicine, animal models are useful. However, four-limbed vertebrates, including humans, generally lose their competency of scarless regeneration as they transit to their terrestrial life-stages through metamorphosis, hatching or birth. Therefore, animals that serve as a model for postnatal humans must be an exception to this rule, such as the newt. Here, we evaluated the adult newt in detail for the first time. Using a Japanese fire-bellied newt, Cynops pyrrhogaster, we excised the full-thickness skin at various locations on the body, and surveyed their re-epithelialization, granulation or dermal fibrosis, and recovery of texture and appendages as well as color (hue, tone and pattern) for more than two years. We found that the skin of adult newts eventually regenerated exceptionally well through unique processes of re-epithelialization and the absence of fibrotic scar formation, except for the dorsal-lateral to ventral skin whose unique color patterns never recovered. Color pattern is species-specific. Consequently, the adult C. pyrrhogaster provides an ideal model system for studies aimed at perfect skin wound healing and regeneration in postnatal humans.


2021 ◽  
Vol 9 (4) ◽  
pp. 48
Author(s):  
Bingqiang He ◽  
Honghua Song ◽  
Yongjun Wang

Lizards can spontaneously regenerate their lost tail without evoking excessive inflammation at the damaged site. In contrast, tissue/organ injury of its mammalian counterparts results in wound healing with a formation of a fibrotic scar due to uncontrolled activation of inflammatory responses. Unveiling the mechanism of self-limited inflammation occurring in the regeneration of a lizard tail will provide clues for a therapeutic alternative to tissue injury. The present review provides an overview of aspects of rapid wound healing and roles of antibacterial peptides, effects of leukocytes on the tail regeneration, self-blocking of the inflammatory activation in leukocytes, as well as inflammatory resistance of blastemal cells or immature somatic cells during lizard tail regeneration. These mechanistic insights of self-control of inflammation during lizard tail regeneration may lead in the future to the development of therapeutic strategies to fight injury-induced inflammation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dayu Pan ◽  
Fuhan Yang ◽  
Shibo Zhu ◽  
Yongjin Li ◽  
Guangzhi Ning ◽  
...  

AbstractSpinal cord injury (SCI) can lead to severe loss of motor and sensory function with high disability and mortality. The effective treatment of SCI remains unknown. Here we find systemic injection of TGF-β neutralizing antibody induces the protection of axon growth, survival of neurons, and functional recovery, whereas erythropoietin-producing hepatoma interactor B2 (EphrinB2) expression and fibroblasts distribution are attenuated. Knockout of TGF-β type II receptor in fibroblasts can also decrease EphrinB2 expression and improve spinal cord injury recovery. Moreover, miR-488 was confirmed to be the most upregulated gene related to EphrinB2 releasing in fibroblasts after SCI and miR-488 initiates EphrinB2 expression and physical barrier building through MAPK signaling after SCI. Our study points toward elevated levels of active TGF-β as inducer and promoters of fibroblasts distribution, fibrotic scar formation, and EphrinB2 expression, and deletion of global TGF-β or the receptor of TGF-β in Col1α2 lineage fibroblasts significantly improve functional recovery after SCI, which suggest that TGF-β might be a therapeutic target in SCI.


2021 ◽  
Author(s):  
Wenyang Li ◽  
Jennifer Y. Chen ◽  
Cheng Sun ◽  
Robert P. Sparks ◽  
Lorena Pantano ◽  
...  

Chronic liver injury causes fibrosis, characterized by the formation of scar tissue resulting from excessive accumulation of extracellular matrix (ECM) proteins. Hepatic stellate cell (HSC) myofibroblasts are the primary cell type responsible for liver fibrosis, yet there are currently no therapies directed at inhibiting the activity of HSC myofibroblasts. To search for potential anti-fibrotic drugs, we performed a high-throughput compound screen in primary human HSC myofibroblasts and identified 19 small molecules that induce HSC inactivation, including the polyether ionophore nanchangmycin (NCMC). NCMC induces lipid re-accumulation while reducing collagen expression, deposition of collagen in the extracellular matrix, cell proliferation, and migration. We find that NCMC increases cytosolic Ca2+ and reduces the phosphorylated protein levels of FYN, FAK, ERK1/2, HSP27 and STAT5B. Further, depletion of each of these kinases suppress COL1A1 expression. These studies reveal a signaling network triggered by NCMC to inactivate HSC myofibroblasts and reduce expression of proteins that compose the fibrotic scar. The identification of the antifibrotic effects of NCMC and the pathways by which NCMC inhibits fibrosis provides new tools and therapeutic targets to combat the development and progression of liver fibrosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kellen Chen ◽  
Sun Hyung Kwon ◽  
Dominic Henn ◽  
Britta A. Kuehlmann ◽  
Ruth Tevlin ◽  
...  

AbstractTissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.


Sign in / Sign up

Export Citation Format

Share Document