Direct Preparation of High Thermal Stable PLA‐Based Nanocomposite via Extra‐Low Loading of In Situ Exfoliated Ultrathin MWW Zeolite Nanosheets

2020 ◽  
Vol 305 (12) ◽  
pp. 2000406
Author(s):  
Chunna Zhang ◽  
Sinong Wang ◽  
Hongbin Zhang ◽  
Peng Liu ◽  
Minmin Yu ◽  
...  
2020 ◽  
Author(s):  
Aidan Kelly ◽  
Peng-Jui (Ruby) Chen ◽  
Jenna Klubnick ◽  
Daniel J. Blair ◽  
Martin D. Burke

<div> <div> <div> <p>Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a mild and simple MIDA boronate synthesis procedure. This method expands the range of sensitive boronic acids that can be converted into their MIDA boronate counterparts. Further utilizing unique properties of MIDA boronates, we have developed a MIDA Boronate Maker Kit which enables the direct preparation and purification of MIDA boronates from boronic acids using only heating and centrifuge equipment that is widely available in labs that do not specialize in organic synthesis. </p> </div> </div> </div>


Author(s):  
Min Xiang ◽  
Chen-Yi Li ◽  
Jian Zhang ◽  
Ying Zou ◽  
Wen-Sheng Li ◽  
...  

Organocatalytic Enantioselective IEDDA reaction between hydroxymaleimides and in situ generated nitrosoalkenes has been disclosed, a series of chiral hemiketals containing 5,6-dihydro-4H-l,2-oxazines and succinimide frameworks have been prepared.


Author(s):  
Jianbing Huang ◽  
Zongqiang Mao ◽  
Bin Zhu ◽  
Lizhai Yang ◽  
Ranran Peng ◽  
...  

A novel method was developed to prepare fine doped ceria (DCO) powders directly. Ceria doped with 20 mol. % of samarium (Ce0.8Sm0.2O1.9, SDC) was prepared by in-situ oxidization of hydroxide precipitates with H2O2 in the solutions. The resultant powder desiccated at 85°C overnight was characterized by X-ray diffraction (XRD), thermogravimetry /differential thermal analysis (TG/DTA), and transmission electron microscopy (TEM). The XRD pattern showed that the as-dried SDC powder is single phase with a cubic fluorite structure like that of pure CeO2. An anode-supported SOFC was also fabricated based on SDC and 20wt. % (62mol. %Li2CO3–38 mol. %K2CO3) composite electrolyte, LiNiO2 as cathode and NiO as anode, by cold pressing. Using hydrogen as the fuel and air as the oxidant, the I-V and I-P characteristics exhibit excellent performances and the maximum power densities are about 696, 469, 377 and 240 mWcm−2 at 650, 600, 550 and 500°C, respectively.


2020 ◽  
Author(s):  
Aidan Kelly ◽  
Peng-Jui (Ruby) Chen ◽  
Jenna Klubnick ◽  
Daniel J. Blair ◽  
Martin D. Burke

<div> <div> <div> <p>Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a mild and simple MIDA boronate synthesis procedure. This method expands the range of sensitive boronic acids that can be converted into their MIDA boronate counterparts. Further utilizing unique properties of MIDA boronates, we have developed a MIDA Boronate Maker Kit which enables the direct preparation and purification of MIDA boronates from boronic acids using only heating and centrifuge equipment that is widely available in labs that do not specialize in organic synthesis. </p> </div> </div> </div>


2008 ◽  
Vol 318 (1-2) ◽  
pp. 38-44 ◽  
Author(s):  
Gangling Chen ◽  
Hong Qi ◽  
Weihong Xing ◽  
Nanping Xu

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document