Multicolor Fluorescent Polymeric Actuator with Self‐Sustained Oscillation Behavior

Author(s):  
Beibei Zhan ◽  
Shuxin Wei ◽  
Zhengfang Hu ◽  
Hao Liu ◽  
Huiyu Qiu ◽  
...  
2018 ◽  
Vol 21 (6) ◽  
pp. 411-419 ◽  
Author(s):  
Conghua Wang ◽  
Fang Yan ◽  
Yuan Zhang ◽  
Haihong Liu ◽  
Linghai Zhang

Aims and Objective: A large number of experimental evidences report that the oscillatory dynamics of p53 would regulate the cell fate decisions. Moreover, multiple time delays are ubiquitous in gene expression which have been demonstrated to lead to important consequences on dynamics of genetic networks. Although delay-driven sustained oscillation in p53-based networks is commonplace, the precise roles of such delays during the processes are not completely known. Method: Herein, an integrated model with five basic components and two time delays for the network is developed. Using such time delays as the bifurcation parameter, the existence of Hopf bifurcation is given by analyzing the relevant characteristic equations. Moreover, the effects of such time delays are studied and the expression levels of the main components of the system are compared when taking different parameters and time delays. Result and Conclusion: The above theoretical results indicated that the transcriptional and translational delays can induce oscillation by undergoing a super-critical Hopf bifurcation. More interestingly, the length of these delays can control the amplitude and period of the oscillation. Furthermore, a certain range of model parameter values is essential for oscillation. Finally, we illustrated the main results in detail through numerical simulations.


2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


PROTOPLASMA ◽  
1997 ◽  
Vol 197 (1-2) ◽  
pp. 132-135 ◽  
Author(s):  
K. Takahashi ◽  
A. Takamatsu ◽  
Z. -S. Hu ◽  
Y. Tsuchiya

2017 ◽  
Vol 30 (4) ◽  
pp. 1294-1299 ◽  
Author(s):  
Kung-Ming CHUNG ◽  
Kuan-Huang LEE ◽  
Keh-Chin CHANG

1997 ◽  
Vol 77 (5) ◽  
pp. 2736-2752 ◽  
Author(s):  
Yair Manor ◽  
John Rinzel ◽  
Idan Segev ◽  
Yosef Yarom

Manor, Yair, John Rinzel, Idan Segev, and Yosef Yarom. Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77: 2736–2752, 1997. The mechanism underlying subthreshold oscillations in inferior olivary cells is not known. To study this question, we developed a single-compartment, two-variable, Hodgkin-Huxley-like model for inferior olive neurons. The model consists of a leakage current and a low-threshold calcium current, whose kinetics were experimentally measured in slices. Depending on the maximal calcium and leak conductances, we found that a neuron model's response to current injection could be of four qualitatively different types: always stable, spontaneously oscillating, oscillating with injection of current, and bistable with injection of current. By the use of phase plane techniques, numerical integration, and bifurcation analysis, we subdivided the two-parameter space of channel densities into four regions corresponding to these behavioral types. We further developed, with the use of such techniques, an empirical rule of thumb that characterizes whether two cells when coupled electrically can generate sustained, synchronized oscillations like those observed in inferior olivary cells in slices, of low amplitude (0.1–10 mV) in the frequency range 4–10 Hz. We found that it is not necessary for either cell to be a spontaneous oscillator to obtain a sustained oscillation. On the other hand, two spontaneous oscillators always form an oscillating network when electrically coupled with any arbitrary coupling conductance. In the case of an oscillating pair of electrically coupled nonidentical cells, the coupling current varies periodically and is nonzero even for very large coupling values. The coupling current acts as an equalizing current to reconcile the differences between the two cells' ionic currents. It transiently depolarizes one cell and/or hyperpolarizes the other cell to obtain the regenerative response(s) required for the synchronized oscillation. We suggest that the subthreshold oscillations observed in the inferior olive can emerge from the electrical coupling between neurons with different channel densities, even if the inferior olive nucleus contains no or just a small proportion of spontaneously oscillating neurons.


1993 ◽  
Vol 185 (2) ◽  
pp. 300-301 ◽  
Author(s):  
S. F. Lin ◽  
R. A. Abbas ◽  
J. P. Wikswo

1999 ◽  
Vol 1 (4) ◽  
pp. 387-396 ◽  
Author(s):  
K. Yamamoto ◽  
F. Hiroki ◽  
K. Hyodo

2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Yuchuan Wang ◽  
Lei Tan ◽  
Binbin Wang ◽  
Shuliang Cao ◽  
Baoshan Zhu

Large eddy simulation (LES) approach was used to investigate jumps of primary frequency of shear layer flow over a cavity. Comparisons between computational results and experimental data show that LES is an appropriate approach to accurately capturing the critical values of velocity and cavity length of a frequency jump, as well as characteristics of the separated shear layer. The drive force of the self-sustained oscillation of impinging shear layer is fluid injection and reinjection. Flow patterns in the shear layer and cavity before and after the frequency jump demonstrate that the frequency jump is associated with vortex–corner interaction. Before frequency jump, a mature vortex structure is observed in shear layer. The vortex is clipped by impinging corner at approximately half of its size, which induces strong vortex–corner interaction. After frequency jump, successive vortices almost escape from impinging corner without the generation of a mature vortex, thereby indicating weaker vortex–corner interaction. Two wave peaks are observed in the shear layer after the frequency jump because of: (1) vortex–corner interaction and (2) centrifugal instability in cavity. Pressure fluctuations inside the cavity are well regulated with respect to time. Peak values of correlation coefficients close to zero time lags indicate the existence of standing waves inside the cavity. Transitions from a linear to a nonlinear process occurs at the same position (i.e., x/H = 0.7) for both velocity and cavity length variations. Slopes of linear region are solely the function of cavity length, thereby showing increased steepness with increased cavity length.


Sign in / Sign up

Export Citation Format

Share Document