Durable and flexible PET‐based bending sensor obtained by immobilizing carbon nanotubes via surface micro‐dissolution for body motion monitoring

Author(s):  
Ziqin Wu ◽  
Fa Yang ◽  
Jinlong Yang ◽  
Pu Yang ◽  
Xiaolei Zhang ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 120 ◽  
Author(s):  
Lu Gan ◽  
Aobo Geng ◽  
Ying Wu ◽  
Linjie Wang ◽  
Xingyu Fang ◽  
...  

In the present study, flexible and conductive nanofiber membranes were prepared by coating PLA nanofibrous scaffolds with carbon nanotubes and silver nanoparticles. The morphology and structure of the prepared membrane was characterized, as well as its mechanical properties, electrical sensing behavior during consecutive stretching-releasing cycles and human motion detecting performance. Furthermore, the antibacterial properties of the membrane was also investigated. Due to the synergistic and interconnected three-dimensional (3D) conductive networks, formed by carbon nanotubes and silver nanoparticles, the membrane exhibited repeatable and durable strain-dependent sensitivity. Further, the prepared membrane could accurately detect the motions of different body parts. Accompanied with promising antibacterial properties and washing fastness, the prepared flexible and conductive membrane provides great application potential as a wearable fabric for real-time body motion sensing.


Author(s):  
Michael J. Leamy ◽  
Anthony A. DiCarlo

This work develops a tensor-based, reduced-order shell finite element formulation used to predict the phonon behavior of toroidal carbon nanotubes (CNTs). Displacements referencing two covariant basis vectors lying in the toroid’s tangent space, and one basis vector orthogonal to the tangent space, capture the kinematics of the toroidal CNT. These basis vectors compose a curvilinear coordinate system. Although specific attention is on toroidal CNTs, the formulation can be quickly adapted to cylindrical or other curvilinear CNTs by appropriate replacement of the metric tensor components and Christoffel symbols. The finite element procedure originates from a variational statement (Hamilton’s Principle) governing virtual work from internal, external (not considered), and inertial forces. Internal virtual work is related to changes in atomistic potential energy accounted for by an interatomic potential computed at reference area elements. Small virtual changes in the displacements allow a global mass and stiffness matrix to be computed, and these matrices then allow phonons to be predicted via the general eigenvalue problem. Results are generated for example toroidal CNTs documenting zero-energy behavior (rigid body motion) and the lowest phonons, which include the expected breathing-like and bending-like phonons.


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


Nature China ◽  
2007 ◽  
Author(s):  
Rachel Pei Chin Won
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document