scholarly journals Antibacterial, Flexible, and Conductive Membrane Based on MWCNTs/Ag Coated Electro-Spun PLA Nanofibrous Scaffolds as Wearable Fabric for Body Motion Sensing

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 120 ◽  
Author(s):  
Lu Gan ◽  
Aobo Geng ◽  
Ying Wu ◽  
Linjie Wang ◽  
Xingyu Fang ◽  
...  

In the present study, flexible and conductive nanofiber membranes were prepared by coating PLA nanofibrous scaffolds with carbon nanotubes and silver nanoparticles. The morphology and structure of the prepared membrane was characterized, as well as its mechanical properties, electrical sensing behavior during consecutive stretching-releasing cycles and human motion detecting performance. Furthermore, the antibacterial properties of the membrane was also investigated. Due to the synergistic and interconnected three-dimensional (3D) conductive networks, formed by carbon nanotubes and silver nanoparticles, the membrane exhibited repeatable and durable strain-dependent sensitivity. Further, the prepared membrane could accurately detect the motions of different body parts. Accompanied with promising antibacterial properties and washing fastness, the prepared flexible and conductive membrane provides great application potential as a wearable fabric for real-time body motion sensing.

2019 ◽  
Vol 13 (1) ◽  
pp. 59-69
Author(s):  
Beatriz O. García ◽  
Oxana V. Kharissova ◽  
Rasika Dias ◽  
Francisco S. Aguirre-Tostado ◽  
César Leyva ◽  
...  

Background: Synthesis and applications of Ag-coated carbon nanotubes are currently under intensive research, resulting in a series of recent patents. Silver nanoparticles are normally obtained from silver nitrate. However, there are also other silver-containing compounds that can facilitate the production of silver nanoparticles, such as silver(I) acetate and silver(II) oxide. Being combined with carbon nanotubes, silver nanoparticles can transfer to them some of their useful properties, such as conductivity and antibacterial properties, and contribute to improving their dispersion in solvents. Objective: To apply three different silver-containing precursors of Ag nanoparticles for the decoration of carbon nanotubes and study the morphology of formed composites by several methods. Method: Three different silver compounds were used as Ag source to carry out the functionalization and decoration of carbon nanotubes under ultrasonic treatment of the reaction system, containing, commercial carbon nanotubes, organic peroxides as oxidants or hydrazine as a reductant, and a surfactant. Resulting samples were analyzed by XRD and XPS spectroscopy, as well as TEM and SEM microscopy to study the morphology of formed nanocomposites. Results: Silver nanoparticles can be produced without the presence of a reducing agent. Applying hydrazine, as a reducing agent, it is possible to obtain functionalized carbon nanotubes doped with silver nanoparticles, in which their sizes are smaller (1-5 nm) compared to those obtained without using hydrazine. Conclusion: Silver nanoparticles having a size range between 2-60 nm can be produced without the presence of a reducing agent. The use of a reducing agent, such as hydrazine, affects the size of silver nanoparticles.


Author(s):  
WARREN LONG ◽  
YEE-HONG YANG

Motion provides extra information that can aid in the recognition of objects. One of the most commonly seen objects is, perhaps, the human body. Yet little attention has been paid to the analysis of human motion. One of the key steps required for a successful motion analysis system is the ability to track moving objects. In this paper, we describe a new system called Log-Tracker, which was recently developed for tracking the motion of the different parts of the human body. Occlusion of body parts is termed a forking condition. Two classes of forks as well as the attributes required to classify them are described. Experimental results from two gymnastics sequences indicate that the system is able to track the body parts even when they are occluded for a short period of time. Occlusions that extend for a long period of time still pose problems to Log-Tracker.


Author(s):  
C. Altuntas ◽  
F. Turkmen ◽  
A. Ucar ◽  
Y. A. Akgul

Biomedical applications generally needs measurement the human body parts in motion. On the other hand, the analysis of the human motion includes mobile measurements. The mobile measurement is complicated task because it needs two or more sensor combination, specific measurement techniques and huge computation. Thus, it is actual research topic in photogrammetry and computer sciences community. Time-of-flight (ToF) camera can make measurement the moving object. It can be used for robotic and simultaneous localization and mapping applications. Human motion capture is recent application area for ToF camera. In this study analysis of the body motion were made with time-of-flight camera. We made measurement to runner on treadmill. The motion was analysed with computing the angle between body parts.


2021 ◽  
pp. 002199832110201
Author(s):  
Hao Zhu ◽  
Shengping Dai ◽  
Xiaoshuang Zhou ◽  
Xu Dong ◽  
Yaoyao Jiang ◽  
...  

In recent years, Flexible sensors have emerged as a highly active field due to their promising applications in artificial intelligence systems and wearable health care devices. However, achieving a high sensitivity in a wide pressure range is still a challenge. Here, a three-dimensional network structure CNT-rGO aerogels were prepared by a hydrothermal redox method, which can effectively enhance the mechanical strength and enrich the electrical conductivity paths. Moreover, the CNT–rGO aerogel-based piezoresistive sensor exhibited a fast response time (∼300 ms), wide working range (0∼3.5 kPa−1), high sensitivity (11.8 kPa−1), and good stability (∼2000 cycles). So the piezoresistive sensor can be employed to monitor and distinguish both large motions (e.g., weight placed on the aerogel) and subtle motions (e.g., pronounce and pulse), which shows potential applications in measuring pressure distribution, distinguishing tiny stress changes, and monitoring human body motion.


2016 ◽  
Vol 12 (4) ◽  
pp. 411-415 ◽  
Author(s):  
Yingzhu Liu ◽  
Yuetong Hu ◽  
Rongsheng Chen ◽  
Weiting Zhan ◽  
Hongwei Ni ◽  
...  

Author(s):  
Jenchieh Lee ◽  
Henryk Flashner ◽  
Jill McNitt-Gray

A computational approach for estimating three-dimensional human body motion from measurement of marker locations during motion is proposed. The proposed method computes the system’s kinematics while preserving important physical and dynamic properties. These properties include preserving the connection point (joint) between any two neighboring bodies and satisfying total body linear and angular momentum conservation laws. Four sets of equations are formulated for kinematic and dynamic properties of body segments. Attitude estimation is based on Wahba’s problem [1], and dynamic and kinematic constraints are included by utilizing penalty function method. An iteration process is presented to combine the four sets of estimation measure to ensure convergence to the optimal solution. Two examples are presented to demonstrate the performance of the proposed method: estimation of the kinematics of a chain of rigid bodies obtained by computer simulation, and estimation of motion in three dimension of a diver obtained using experimental measurements. The results of both examples show fast convergence of the algorithm to an optimal solution while satisfying the imposed the constraints.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2483 ◽  
Author(s):  
Jie Shen ◽  
Chang Cui ◽  
Jian Li ◽  
Lijuan Wang

An antibacterial superabsorbent polymer (SAP) was synthesized by grafting acrylic acid (AA) onto carboxymethyl cellulose (CMC) and mixing with silver particles, with N,N′-methylenebisacrylamide used as a crosslinker and potassium persulfate as an initiator. Silver nanoparticles were produced through the reaction between glucose and silver nitrate. The effects of the amount of silver nitrate added in the polymer on the swelling ratio were investigated and the maximum swelling ratio of the SAP loaded with silver particles in distilled water and in a 0.9 wt % NaCl solution reached 840 g/g and 71 g/g, respectively, when the silver nitrate added was 50 mg. The SAP was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, energy dispersive spectrometry, transmission electron microscopy, and thermogravimetric analysis. Through these analysis methods, it could be seen that the acrylic acid was successfully grafted onto CMC, forming a three-dimensional network structure, with the successful production of silver nanoparticles with sizes ranging from 5 nm to 50 nm. Moreover, the antibacterial properties of the SAP loaded with silver nanoparticles against Staphylococcus aureus and Escherichia coli were investigated and the results show that they became more effective with increasing silver nitrate concentration. The obtained SAP can be useful in developing new antibacterial medical and public health supplies.


Author(s):  
C. Altuntas ◽  
F. Turkmen ◽  
A. Ucar ◽  
Y. A. Akgul

Biomedical applications generally needs measurement the human body parts in motion. On the other hand, the analysis of the human motion includes mobile measurements. The mobile measurement is complicated task because it needs two or more sensor combination, specific measurement techniques and huge computation. Thus, it is actual research topic in photogrammetry and computer sciences community. Time-of-flight (ToF) camera can make measurement the moving object. It can be used for robotic and simultaneous localization and mapping applications. Human motion capture is recent application area for ToF camera. In this study analysis of the body motion were made with time-of-flight camera. We made measurement to runner on treadmill. The motion was analysed with computing the angle between body parts.


Author(s):  
Silvia Bittolo Bon ◽  
Irene Chiesa ◽  
Micaela Degli Esposti ◽  
Davide Morselli ◽  
Paola Fabbri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document