scholarly journals The effect of composition drift and copolymer microstructure on mechanical bulk properties of styrene-methyl acrylate emulsion copolymers

1995 ◽  
Vol 92 (1) ◽  
pp. 133-156 ◽  
Author(s):  
Harold A. S. Schoonbrood ◽  
Harry M. G. Brouns ◽  
Henk A. Thijssen ◽  
Alex M. van Herk ◽  
Anton L. German
1985 ◽  
Vol 55 ◽  
Author(s):  
Miguel F. Refojo

ABSTRACTImplants are essential for the repair of retinal detachments. The implant buckles the wall of the eye and apposes the detached retina with the choroid, thus restoring light sensitivity to the retina. The scleral buckling also relieves traction on the retina from a shrinking vitreous body. The implant materials most commonly used are solid silicone rubber and silicone sponges, but both types have some disadvantages. A poly(hydroxyethyl acrylate-co-methyl acrylate) hydrogel implant with improved properties of softness and antibiotic absorption is also available for retinal detachment surgery. Proliferative vitreoretinopathy involves various conditions of retinal detachment complicated by vitreous fibrosis, which, after vitrectomy, may be treated with intraocular injection of fluids that support the retina against the choroid. For conditions requiring a long-term implant, silicone oil although controversial is the material of choice. Many other substances have been investigated but none better has yet been found.


2003 ◽  
Vol 775 ◽  
Author(s):  
Byeongchan Lee ◽  
Kyeongjae Cho

AbstractWe investigate the surface kinetics of Pt using the extended embedded-atom method, an extension of the embedded-atom method with additional degrees of freedom to include the nonbulk data from lower-coordinated systems as well as the bulk properties. The surface energies of the clean Pt (111) and Pt (100) surfaces are found to be 0.13 eV and 0.147 eV respectively, in excellent agreement with experiment. The Pt on Pt (111) adatom diffusion barrier is found to be 0.38 eV and predicted to be strongly strain-dependent, indicating that, in the compressive domain, adatoms are unstable and the diffusion barrier is lower; the nucleation occurs in the tensile domain. In addition, the dissociation barrier from the dimer configuration is found to be 0.82 eV. Therefore, we expect that atoms, once coalesced, are unlikely to dissociate into single adatoms. This essentially tells that by changing the applied strain, we can control the patterning of nanostructures on the metal surface.


Sign in / Sign up

Export Citation Format

Share Document