Optimization of dry sliding wear parameters of AA336 aluminum alloy‐boron carbide and fly ash reinforced hybrid composites by stir casting process

2020 ◽  
Vol 51 (2) ◽  
pp. 189-198 ◽  
Author(s):  
S. Arunachalam ◽  
S.J.S. Chelladurai
2020 ◽  
Vol 62 (5) ◽  
pp. 525-534
Author(s):  
S. Magibalan ◽  
P. Senthilkumar ◽  
C. Senthilkumar ◽  
M. Prabu

Abstract The present research work is focused on the production of aluminum alloy 8011 with 12 wt.-% fly ash composite by using the stir casting method. A three-level central composite design experiment is developed using response surface methodology (RSM) with various parameters. Load, time and sliding velocity are varied in the range of (5-15 N), (5-15 min) and (1.5-4.5 m × s-1), respectively. Dry sliding wear tests are performed as per the experimental design using a pin-on-disc at room temperature. This paper describes how optimization studies were carried out on a dry sliding wear process with multi-response characteristics based on MCDM using the TOPSIS approach. The process parameters, load, time and sliding velocity are optimized with multi-response characteristics, including the wear rate (WR), and the coefficient of friction (COF). A sensitivity analysis is also carried out and compared with the relative impact of input parameters on wear behavior in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The experimental results indicate that the multi-response characteristics of aluminum alloy 8011 with 12 wt.-% fly ash composite used during the wear behavior process can be enhanced through the TOPSIS method.


2014 ◽  
Vol 984-985 ◽  
pp. 221-226
Author(s):  
J. Jebeen Moses ◽  
S. Joseph Sekhar

Stir casting is an economical method to produce aluminum matrix composites (AMCs). In the present work, Aluminum alloy AA6061 reinforced with various amounts (0, 5, 10 and 15wt. %) of SiC particles were prepared. The matrix alloy was melted in a furnace and stirred to form a vortex. SiC particles were added to the periphery of the vortex and the composite melt was solidified in a permanent mold. The microstructures of the AMCs were studied using optical and scanning electron microscopy. SiC particles were observed to refine the grains and were distributed homogeneously in the aluminum matrix. SiC particle clusters were also seen in a few places. SiC particles were properly bonded to the aluminum matrix. Dry sliding wear behavior was analyzed by Pin on Disc apparatus. The reinforcement of SiC particles improved the wear resistance of the AMCs.The details of worn surface and wear debris are also presented in this paper.


2015 ◽  
Vol 90 ◽  
pp. 148-156 ◽  
Author(s):  
O. Carvalho ◽  
M. Buciumeanu ◽  
S. Madeira ◽  
D. Soares ◽  
F.S. Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document