scholarly journals Sensitivity of Volumetric Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to Progression of Spinocerebellar Ataxia Type 1

2019 ◽  
Vol 6 (7) ◽  
pp. 549-558 ◽  
Author(s):  
Dinesh K. Deelchand ◽  
James M. Joers ◽  
Adarsh Ravishankar ◽  
Tianmeng Lyu ◽  
Uzay E. Emir ◽  
...  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Timothy R Koscik ◽  
Lauren Sloat ◽  
Ellen van der Plas ◽  
James M Joers ◽  
Dinesh K Deelchand ◽  
...  

Abstract Spinocerebellar ataxia type 1 is a progressive neurodegenerative, movement disorder. With potential therapies on the horizon, it is critical to identify biomarkers that (i) differentiate between unaffected and spinocerebellar ataxia Type 1-affected individuals; (ii) track disease progression; and (iii) are directly related to clinical changes of the patient. Magnetic resonance imaging of volumetric changes in the brain may be a suitable source of biomarkers for spinocerebellar ataxia Type 1. In a previous report on a longitudinal study of patients with spinocerebellar ataxia Type 1, we evaluated the volume and magnetic resonance spectroscopy measures of the cerebellum and pons, showing pontine volume and pontine N-acetylaspartate-to-myo-inositol ratio were sensitive to change over time. As a follow-up, the current study conducts a whole brain exploration of volumetric MRI measures with the aim to identify biomarkers for spinocerebellar ataxia Type 1 progression. We adapted a joint label fusion approach using multiple, automatically generated, morphologically matched atlases to label brain regions including cerebellar sub-regions. We adjusted regional volumes by total intracranial volume allowing for linear and power-law relationships. We then utilized Bonferroni corrected linear mixed effects models to (i) determine group differences in regional brain volume and (ii) identify change within affected patients only. We then evaluated the rate of change within each brain region to identify areas that changed most rapidly. Lastly, we used a penalized, linear mixed effects model to determine the strongest brain predictors of motor outcomes. Decrease in pontine volume and accelerating decrease in putamen volume: (i) reliably differentiated spinocerebellar ataxia Type 1-affected and -unaffected individuals; (ii) were observable in affected individuals without referencing an unaffected comparison group; (iii) were detectable within ∼6–9 months; and (iv) were associated with increased disease burden. In conclusion, volumetric change in the pons and putamen may provide powerful biomarkers to track disease progression in spinocerebellar ataxia Type 1. The methods employed here are readily translatable to current clinical settings, providing a framework for study and usage of volumetric neuroimaging biomarkers for clinical trials.


2021 ◽  
Vol 15 (9) ◽  
pp. 4009-4011
Author(s):  
Saulat Sarfraz ◽  
Mahwish Farzana

Background: In spite of recent advances in the use of diagnostic imaging modalities none of them has a hundred percent accuracy. So, misdiagnosis still occurs. Many trials are being done to evaluate the accuracy of these tools individually or in combination. The most useful investigation is MRI which broadly gives information of lesion as well its relationship with surrounding structures. While magnetic resonance spectroscopy further characterizes the lesion into benign or malignant. So this study is bit superior giving more details. By enlarge histopathology is gold standard for ultimate diagnosis. However these radiological investigations are extremely important for preoperative planning as well management of the lesion. In this study we compare the diagnostic accuracy of Magnetic Resonance Spectroscopy (MRS) with conventional MRI (Magnetic Resonance Imaging) sequences for diagnosis of brain tumors keeping histopathology as gold standard. Methods: The study was performed in 150 clinically suspected cases which were referred to Radiology Department from OPD, Indoor, Emergency and private sources from outside the hospital. Results: Majority 85(56.7%) were adult males and 65(43.3%) were adult females. The study was divided into two major age groups. There were 33cases (22%) with average age 20-35 years. The other age group 36-50 years had 40(26.7%) Majority of the cases 77(51.3%) were of average >50 years of age. The higher age groups showed a female dominance. Histopathology of 100(66.7%) cases confirmed positive and 50(33.3%) negative for MR Spectroscopy. On comparison of conventional MRI with contrast, and Histopathology it was observed that the sensitivity of MRI was 74.0% and the specificity 82.0%.The positive and negative predictive values gave a lower accuracy rate of 76.6%. Conclusion: The conclusion of our study is that MRS is a rigorous, non-invasive, safe and convenient imaging modality for the evaluation of brain tumors as compared to MRI. Keywords: Brain tumors, MRI, MRS, Histopathology


2001 ◽  
Vol 16 (07) ◽  
pp. 522 ◽  
Author(s):  
Maria K. Zarifi ◽  
A. Aria Tzika ◽  
Loukas G. Astrakas ◽  
Tina Young Poussaint ◽  
Douglas C. Anthony ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document