NovelSPG6 mutation p.A100T in a Japanese family with autosomal dominant form of hereditary spastic paraplegia

2006 ◽  
Vol 21 (9) ◽  
pp. 1531-1533 ◽  
Author(s):  
Satoshi Kaneko ◽  
Toshitaka Kawarai ◽  
Edwin Yip ◽  
Shabnam Salehi-Rad ◽  
Christine Sato ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Takuya Morikawa ◽  
Shiroh Miura ◽  
Takahisa Tateishi ◽  
Kazuhito Noda ◽  
Hiroki Shibata

AbstractSpastic paraplegia (SPG) type 4 is an autosomal dominant SPG caused by functional variants in the SPAST gene. We examined a Japanese family with three autosomal dominant SPG patients. These patients presented with typical symptoms of SPG, such as spasticity of the lower limbs. We identified a rare nonsynonymous variant, NM_014946.4:c.1252G>A [p.Glu418Lys], in all three family members. This variant has previously been reported in a Russian SPG family as a “likely pathogenic” variant.5 Ascertainment of additional patients carrying this variant in an unrelated Japanese SPG family further supports its pathogenicity. Molecular diagnosis of SPG4 in this family with hereditary spastic paraplegia is confirmed.


Neurology ◽  
1987 ◽  
Vol 37 (6) ◽  
pp. 910-910 ◽  
Author(s):  
R-M. N. Boustany ◽  
E. Fleischnick ◽  
C. A. Alper ◽  
M. L. Marazita ◽  
M. A. Spence ◽  
...  

2002 ◽  
Vol 81 (11) ◽  
pp. 738-742 ◽  
Author(s):  
M. Kida ◽  
T. Ariga ◽  
T. Shirakawa ◽  
H. Oguchi ◽  
Y. Sakiyama

Amelogenesis imperfecta (AI) is currently classified into 14 distinct subtypes based on various phenotypic criteria; however, the gene responsible for each phenotype has not been defined. We performed molecular genetic studies on a Japanese family with a possible autosomal-dominant form of AI. Previous studies have mapped an autosomal-dominant human AI locus to chromosome 4q11-q21, where two candidate genes, ameloblastin and enamelin, are located. We studied AI patients in this family, focusing on these genes, and found a mutation in the enamelin gene. The mutation detected was a heterozygous, single-G deletion within a series of 7 G residues at the exon 9-intron 9 boundary of the enamelin gene. The mutation was detected only in AI patients in the family and was not detected in other unaffected family members or control individuals. The male proband and his brother showed hypoplastic enamel in both their deciduous and permanent teeth, and their father showed local hypoplastic defects in the enamel of his permanent teeth. The clinical phenotype of these patients is similar to that of the first report of AI caused by an enamelin gene mutation. Thus, heterogeneous mutations in the enamelin gene are responsible for an autosomal-dominant hypoplastic form of AI.


2002 ◽  
Vol 20 (2) ◽  
pp. 127-132 ◽  
Author(s):  
S. Sauter ◽  
B. Miterski ◽  
S. Klimpe ◽  
D. Bönsch ◽  
L. Schöls ◽  
...  

1998 ◽  
Vol 11 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Stephen Salloway ◽  
Joseph Hong

Mental disorders due to cerebral microvascular disease have been known for over 100 years. Recently, an autosomal dominant form of cerebral arteriopathy (CADASIL) has been described in association with a Notch3 family gene on the short arm of chromosome 19. CADASIL causes subcortical lacunar infarction and dementia in over 80% of cases and depression in a large proportion of patients. Clinically, CADASIL may appear to be very similar to hypertensive microvascular disease (Binswanger's disease), a condition that is seen in the elderly. This article reviews the clinical, pathologic, and genetic features of CADASIL. CADASIL is of interest to neurologists and psychiatrists because it is the first syndrome of vascular dementia and depression with an identified gene. How the gene causes the widespread arteriopathy is not yet known. Insights gained from the study of CADASIL should help us better understand its etiology, as well as the options for treatment of the more common forms of microvascular disease seen in the elderly.


2018 ◽  
Vol 2 (2) ◽  
pp. 73
Author(s):  
Naida Lojo-Kadric ◽  
Zelija Velija Asimi ◽  
Jasmin Ramic ◽  
Ksenija Radic ◽  
Lejla Pojskic

MODY (maturity-onset diabetes of the young) is an autosomal dominant form of diabetes that is usually manifested before the 25-year of life. This type of diabetes is caused by defects in the primary insulin secretion. There are several types of MODY, which are monogenic diseases, where mutations in a single gene are responsible for a particular type of MODY. Currently, there are eleven types of MODY, from which the most common types are MODY 2 and MODY 3 (with mutations on GCK and HNF1A genes, respectively). We identified very rare MODY 7 type of diabetes in three family members by MLPA analysis.


2000 ◽  
Vol 67 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Sandra Disse-Nicodème ◽  
Jean-Michel Achard ◽  
Isabelle Desitter ◽  
Anne-Marie Houot ◽  
Albert Fournier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document