Inclusion of Global Navigation Satellite System radio occultation data into Center for Weather Forecast and Climate Studies Local Ensemble Transform Kalman Filter (LETKF) using the Radio Occultation Processing Package as an observation operator

2016 ◽  
Vol 23 (2) ◽  
pp. 328-338 ◽  
Author(s):  
Luiz F. Sapucci ◽  
Fábio L. R. Diniz ◽  
Carlos F. Bastarz ◽  
Lucas A. Avanço
2014 ◽  
Vol 142 (2) ◽  
pp. 555-572 ◽  
Author(s):  
Peter Bauer ◽  
Gábor Radnóti ◽  
Sean Healy ◽  
Carla Cardinali

Abstract Observing system experiments within the operational ECMWF data assimilation framework have been performed for summer 2008 when the largest recorded number of Global Navigation Satellite System (GNSS) radio occultation observations from both operational and experimental satellites were available. Constellations with 0%, 5%, 33%, 67%, and 100% data volume were assimilated to quantify the sensitivity of analysis and forecast quality to radio occultation data volume. These observations mostly constrain upper-tropospheric and stratospheric temperatures and correct an apparent model bias that changes sign across the upper-troposphere–lower-stratosphere boundary. This correction effect does not saturate with increasing data volume, even if more data are assimilated than available in today’s analyses. Another important function of radio occultation data, namely, the anchoring of variational radiance bias corrections, is demonstrated in this study. This effect also does not saturate with increasing data volume. In the stratosphere, the anchoring by radio occultation data is stronger than provided by radiosonde and aircraft observations.


2016 ◽  
Vol 9 (2) ◽  
pp. 781-792 ◽  
Author(s):  
Mi Liao ◽  
Peng Zhang ◽  
Guang-Lin Yang ◽  
Yan-Meng Bi ◽  
Yan Liu ◽  
...  

Abstract. As a new member of the space-based radio occultation sounders, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on Fengyun-3C (FY-3C) has been carrying out atmospheric sounding since 23 September 2013. GNOS takes approximately 800 daily measurements using GPS (Global Positioning System) and Chinese BDS (BeiDou navigation satellite) signals. In this work, the atmospheric refractivity profiles from GNOS were compared with the ones obtained from the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis. The mean bias of the refractivity obtained through GNOS GPS (BDS) was found to be approximately −0.09 % (−0.04 %) from the near surface to up to 46 km. While the average standard deviation was approximately 1.81 % (1.26  %), it was as low as 0.75 % (0.53 %) in the range of 5–25 km, where best sounding results are usually achieved. Further, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and MetOp/ GRAS (GNSS Receiver for Atmospheric Sounding) radio occultation data were compared with the ECMWF reanalysis; the results thus obtained could be used as reference data for GNOS. Our results showed that GNOS/FY-3C meets the design requirements in terms of accuracy and precision of the sounder. It possesses a sounding capability similar to COSMIC and MetOp/GRAS in the vertical range of 0–30 km, though it needs further improvement above 30 km. Overall, it provides a new data source for the global numerical weather prediction (NWP) community.


2018 ◽  
Vol 11 (10) ◽  
pp. 5797-5811 ◽  
Author(s):  
Yueqiang Sun ◽  
Weihua Bai ◽  
Congliang Liu ◽  
Yan Liu ◽  
Qifei Du ◽  
...  

Abstract. The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou Navigation Satellite System (BDS) and the US Global Positioning System (GPS). So far, the GNOS measurements and atmospheric and ionospheric data products have been validated and evaluated and then been used for atmosphere- and ionosphere-related scientific applications. This paper reviews the FY-3C GNOS instrument, RO data processing, data quality evaluation, and preliminary research applications according to the state-of-the-art status of the FY-3C GNOS mission and related publications. The reviewed data validation and application results demonstrate that the FY-3C GNOS mission can provide accurate and precise atmospheric and ionospheric GNSS (i.e., GPS and BDS) RO profiles for numerical weather prediction (NWP), global climate monitoring (GCM), and space weather research (SWR). The performance of the FY-3C GNOS product quality evaluation and scientific applications establishes confidence that the GNOS data from the series of FY-3 satellites will provide important contributions to NWP, GCM, and SWR scientific communities.


2015 ◽  
Vol 8 (9) ◽  
pp. 9009-9044 ◽  
Author(s):  
M. Liao ◽  
P. Zhang ◽  
G. L. Yang ◽  
Y. M. Bi ◽  
Y. Liu ◽  
...  

Abstract. As a new member of space-based radio occultation sounder, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on FY-3C has been carrying out the atmospheric sounding since 23 September 2013. GNOS takes a daily measurement up to 800 times with GPS (Global Position System) and Chinese BDS (BeiDou navigation satellite) signals. The refractivity profiles from GNOS are compared with the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) analyses in this paper. Bias and standard deviation have being calculated as the function of altitude. The mean bias is about 0.2 % from the near surface to 35 km. The average standard deviation is within 2 % while it is down to about 1 % in the range 5–30 km where best soundings are usually made. To evaluate the performance of GNOS, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and GRAS/METOP-A (GNSS Receiver for Atmospheric Sounding) data are also compared to ECMWF analyses as the reference. The results show that GNOS/FY-3C meets the requirements of the design well. It possesses a sounding capability similar to COSMIC and GRAS in the vertical range of 0–30 km, though it needs improvement in higher altitude. Generally, it provides a new data source for global NWP (numerical weather prediction) community.


2019 ◽  
Vol 12 (3) ◽  
pp. 1483-1493 ◽  
Author(s):  
Weihua Bai ◽  
Guojun Wang ◽  
Yueqiang Sun ◽  
Jiankui Shi ◽  
Guanglin Yang ◽  
...  

Abstract. The rapid advancement of global navigation satellite system (GNSS) occultation technology in recent years has made it one of the most advanced space-based remote sensing technologies of the 21st century. GNSS radio occultation has many advantages, including all-weather operation, global coverage, high vertical resolution, high precision, long-term stability, and self-calibration. Data products from GNSS occultation sounding can greatly enhance ionospheric observations and contribute to space weather monitoring, forecasting, modeling, and research. In this study, GNSS occultation sounder (GNOS) results from a radio occultation sounding payload aboard the Fengyun 3 C (FY3-C) satellite were compared with ground-based ionosonde observations. Correlation coefficients for peak electron density (NmF2) derived from GNOS Global Position System (GPS) and Beidou navigation system (BDS) products with ionosonde data were higher than 0.9, and standard deviations were less than 20 %. Global ionospheric effects of the strong magnetic storm event in March 2015 were analyzed using GNOS results supported by ionosonde observations. The magnetic storm caused a significant disturbance in NmF2 level. Suppressed daytime and nighttime NmF2 levels indicated mainly negative storm conditions. In two longitude section zones of geomagnetic inclination between 40 and 80∘, the results of average NmF2 observed by GNOS and ground-based ionosondes showed the same basic trends during the geomagnetic storm and confirmed the negative effect of this storm event on the ionosphere. The analysis demonstrates the reliability of the GNSS radio occultation sounding instrument GNOS aboard the FY3-C satellite and confirms the utility of ionosphere products from GNOS for statistical and event-specific ionospheric physical analyses. Future FY3 series satellites and increasing numbers of Beidou navigation satellites will provide increasing GNOS occultation data on the ionosphere, which will contribute to ionosphere research and forecasting applications.


Sign in / Sign up

Export Citation Format

Share Document