scholarly journals Evaluating the performance of two global ensemble forecasting systems in predicting rainfall over India during the southwest monsoons

2017 ◽  
Vol 24 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Anumeha Dube ◽  
Raghavendra Ashrit ◽  
Harvir Singh ◽  
Kopal Arora ◽  
Gopal Iyengar ◽  
...  
Keyword(s):  
Author(s):  
Clemens Wastl ◽  
Yong Wang ◽  
Aitor Atencia ◽  
Florian Weidle ◽  
Christoph Wittmann ◽  
...  

2015 ◽  
Vol 120 (4) ◽  
pp. 2561-2578 ◽  
Author(s):  
Takahiro Omi ◽  
Yosihiko Ogata ◽  
Yoshito Hirata ◽  
Kazuyuki Aihara

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3020
Author(s):  
Anam-Nawaz Khan ◽  
Naeem Iqbal ◽  
Atif Rizwan ◽  
Rashid Ahmad ◽  
Do-Hyeun Kim

Due to the availability of smart metering infrastructure, high-resolution electric consumption data is readily available to study the dynamics of residential electric consumption at finely resolved spatial and temporal scales. Analyzing the electric consumption data enables the policymakers and building owners to understand consumer’s demand-consumption behaviors. Furthermore, analysis and accurate forecasting of electric consumption are substantial for consumer involvement in time-of-use tariffs, critical peak pricing, and consumer-specific demand response initiatives. Alongside its vast economic and sustainability implications, such as energy wastage and decarbonization of the energy sector, accurate consumption forecasting facilitates power system planning and stable grid operations. Energy consumption forecasting is an active research area; despite the abundance of devised models, electric consumption forecasting in residential buildings remains challenging due to high occupant energy use behavior variability. Hence the search for an appropriate model for accurate electric consumption forecasting is ever continuing. To this aim, this paper presents a spatial and temporal ensemble forecasting model for short-term electric consumption forecasting. The proposed work involves exploring electric consumption profiles at the apartment level through cluster analysis based on the k-means algorithm. The ensemble forecasting model consists of two deep learning models; Long Short-Term Memory Unit (LSTM) and Gated Recurrent Unit (GRU). First, the apartment-level historical electric consumption data is clustered. Later the clusters are aggregated based on consumption profiles of consumers. At the building and floor level, the ensemble models are trained using aggregated electric consumption data. The proposed ensemble model forecasts the electric consumption at three spatial scales apartment, building, and floor level for hourly, daily, and weekly forecasting horizon. Furthermore, the impact of spatial-temporal granularity and cluster analysis on the prediction accuracy is analyzed. The dataset used in this study comprises high-resolution electric consumption data acquired through smart meters recorded on an hourly basis over the period of one year. The consumption data belongs to four multifamily residential buildings situated in an urban area of South Korea. To prove the effectiveness of our proposed forecasting model, we compared our model with widely known machine learning models and deep learning variants. The results achieved by our proposed ensemble scheme verify that model has learned the sequential behavior of electric consumption by producing superior performance with the lowest MAPE of 4.182 and 4.54 at building and floor level prediction, respectively. The experimental findings suggest that the model has efficiently captured the dynamic electric consumption characteristics to exploit ensemble model diversities and achieved lower forecasting error. The proposed ensemble forecasting scheme is well suited for predictive modeling and short-term load forecasting.


2011 ◽  
Vol 137 (657) ◽  
pp. 858-878 ◽  
Author(s):  
Ralph F. Milliff ◽  
Alessandro Bonazzi ◽  
Christopher K. Wikle ◽  
Nadia Pinardi ◽  
L. Mark Berliner

Author(s):  
Xubin Zhang

AbstractThis study examines the case dependence of the multiscale characteristics of initial condition (IC) and model physics (MO) perturbations and their interactions in a convection-permitting ensemble prediction system (CPEPS), focusing on the 12-h forecasts of precipitation perturbation energy. The case dependence of forecast performances of various ensemble configurations is also examined to gain guidance for CPEPS design. Heavy-rainfall cases over Southern China during the Southern China Monsoon Rainfall Experiment (SCMREX) in May 2014 were discriminated between the strongly and weakly forced events in terms of synoptic-scale forcing, each of which included 10 cases. In the cases with weaker forcing, MO perturbations showed larger influences while the enhancements of convective activities relative to the control member due to IC perturbations were less evident, leading to smaller dispersion reduction due to adding MO perturbations to IC perturbations. Such dispersion reduction was more sensitive to IC and MO perturbation methods in the weakly and strongly forced cases, respectively. The dispersion reduction improved the probabilistic forecasts of precipitation, with more evident improvements in the cases with weaker forcing. To improve the benefits of dispersion reduction in forecasts, it is instructive to elaborately consider the case dependence of dispersion reduction, especially the various sensitivities of dispersion reduction to different-source perturbation methods in various cases, in CPEPS design.


Sign in / Sign up

Export Citation Format

Share Document