scholarly journals On the extreme rainfall events during the southwest monsoon season in northeast regions of the Indian subcontinent

2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Hamza Varikoden ◽  
J.V. Revadekar
2014 ◽  
Vol 21 (4) ◽  
pp. 901-917 ◽  
Author(s):  
V. Stolbova ◽  
P. Martin ◽  
B. Bookhagen ◽  
N. Marwan ◽  
J. Kurths

Abstract. This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June–September), post-monsoon (October–December), and pre-monsoon (March–May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 155-162
Author(s):  
S. M. METRI ◽  
KHUSHVIR SINGH

In this paper the rainfall features at different raingauge stations of Goa state have been studied for the period of 30 years. The statistical parameters such as mean monthly rainfall, Standard Deviation and Coefficient of Variation have been computed for each raingauge station of Goa. Some heavy rainfall events during the period have also been studied. The study shows the significant rising trend of rainfall towards the eastern parts of Goa. Goa experiences an average rainfall of about 330 cm annually and around 90% of annual rainfall occurs during southwest monsoon season i.e. (June to September). Studies revealed that most of heavy rainfall events caused due to active off-shore trough and low pressure systems formed over southeast Arabian Sea. It has also come out from the study that the orography of Goa plays an important role in rainfall distribution. Valpoi receives maximum rainfall due to its orographic effect.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 29
Author(s):  
Fibor J. Tan ◽  
Edgardo Jade R. Rarugal ◽  
Francis Aldrine A. Uy

Flooding is a perennial problem in the Philippines during the monsoon season intensified by the effects of typhoon. On average, there are 20 typhoons that enter the Philippine Area of Responsibility (PAR), and many of these make landfall causing catastrophic aftermath. Extreme rainfall events could lead to flooding in the downstream floodplain and landslide in mountainous terrains. In this study, which is for the case of Calumpang River that drains to the populated and developing region of Batangas City, the focus is on flooding in the floodplain areas. The river was modelled using LiDAR digital elevation model (DEM) that has an accuracy of 20cm in the vertical and 50cm in the horizontal. The result of this is river hydraulic model that can be used to accurately generate flood inundation simulations and flood hazard maps.  


MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 405-422
Author(s):  
JAYAWARDENA I M SHIROMANI PRIYANTHIKA ◽  
WHEELER MATTHEW C ◽  
SUMATHIPALA W L ◽  
BASNAYAKE B R S B

The influence of the Madden Julian Oscillation (MJO) on rainfall in Sri Lanka (SL) is examined based on 30 years of daily station data from 1981-2010. Composites are constructed for each of the eight phases of the MJO defined with the Real-time Multivariate MJO (RMM) index, using daily rainfall data from 44 stations over SL for four climatic seasons and comparing to similar results from a satellite-based rainfall product. Composites of lower tropospheric wind and convective anomaly are also investigated in order to examine how the local rainfall anomalies are associated with large-scale circulations. The greatest impact of the MJO on rainfall over SL occurs in the Second Inter-Monsoon (SIM) and Southwest Monsoon (SWM) seasons. Enhanced rainfall generally occurs over SL during RMM phases 2 and 3 when the MJO convective envelop is located in the Indian Ocean and conversely suppressed rainfall in phases 6 and 7. This rainfall impact is due to the direct influence of the MJO’s tropical convective anomalies and associated low-level circulations in the vicinity of SL. In contrast, the MJO influence during the Northeast Monsoon (NEM) season is slightly less than during the SWM and SIM seasons as a result of the southward shift of the MJO convective envelop during boreal winter. Occurrence of extreme rainfall events is most frequent during phase 2 in First Inter-Monsoon (FIM) phases 2 and 3 in SWM, phases 1, 2 and 3 in SIM and phases 2 and 3 in NEM seasons. The analysis of this study provides a useful reference of when and where the MJO has significant impacts on rainfall as well as extreme rainfall events during four climatic seasons in SL. This information can be used along with accurately predicted MJO phase by dynamical or statistical models, to improve extended range forecasting in SL.


MAUSAM ◽  
2021 ◽  
Vol 67 (4) ◽  
pp. 745-766
Author(s):  
A. K. SRIVASTAVA ◽  
G. P. SINGH ◽  
O. P. SINGH

This study has been attempted to investigate the seasonal and annual trends and variations in the occurrence of extreme rainfall over different Indian region and India as a whole. Trends and variations are examined on the basis of following parameters (i) frequency and magnitude of extreme rainfall intensity (ERI) and its contribution in total rainfall (ii) highest rainfall events (iii) frequency of extreme rainfall events and days (iv) frequency of rainfall events and days with daily rainfall above 100 mm and 200 mm in a grid box (1° × 1°) over different Indian regions and India as a whole. Daily gridded rainfall data from India Meteorological Department (IMD) available at 1° × 1° resolution has been used to examine trends and variations associated with extreme rainfall events. Based on the long term 95 and 99 percentile values of daily total /maximum rainfall as a threshold for extreme rainfall intensity/events of category 1 and category 2 respectively, the trends and variations in above mentioned parameters are analyzed for the periods 1951-2007, 1951-1980 and 1981-2007.  The magnitude of highest intensity rainfall is increased over country as a whole and over peninsular India; it is found to be increased by 1% during 1981-2007 as compared to period 1951-1980. The frequency of extreme rainfall intensity (ERI) days of category 1 is found to be significant increasing (0.4 days/decade) over north central region and significant decreasing trend is found over north east region (0.5 days/decade) during the pre-monsoon season. The magnitude of 24 hours highest rainfall in a grid box is found to be significant increasing over all regions under consideration except over north east and south peninsular regions. Over the last ten years period of the present study, most of the 24 hours highest rainfall events in a grid box are seen over west peninsular region. Generalized extreme value (GEV) distribution fitted with annual highest rainfall event over the country as a whole and over different Indian region indicates an increase in magnitude of most probable 24 hours highest rainfall in a grid box during second half of the  study period over north central region of the country. Analysis also reveals an increase in frequency and severity of extreme rainfall over north west, north central and west peninsular regions during the period of 1981-2007 as compared to 1950-1980.                 Annual frequency of days and events with extreme rainfall of both categories is increased most significantly over country during the period of present study (1951-2007). Significant increasing trends in frequency of days with extreme rainfall of both categories is noticed only during the monsoon season while extreme rainfall events showed increasing trends during monsoon and winter season over country as a whole. Number of days and events with daily rainfall in any grid box above 100 mm and 200 mm is observed to be significantly increased over the country. Out of six regions, significant increasing trends  in annual number of days with rainfall above 100 mm in a grid box is observed over north central and north east  regions and for rainfall above 200 mm significant increase is observed over north west and north central regions.


MAUSAM ◽  
2021 ◽  
Vol 67 (4) ◽  
pp. 903-912
Author(s):  
R. BHATLA ◽  
A. TRIPATHI ◽  
R. S. SINGH

An attempt has been made to detect the pattern of rainfall and examine the trends and variations of extreme events of rainfall over Varanasi (Uttar Pradesh, India) through seasonal, monthly and decadal analysis during southwest monsoon season (June-September) using the daily rainfall data of 40 years period from 1971-2010. The results show that cumulative rainfall during 1971-2010 is overall decreasing in monsoon season as well as in all the months June, July, August and September. In general, the observed rainfall events in all categories (Non rainy day, 0-2.4 mm; Category I, 2.5-64.4; Category II, 64.5 to 124.4; Category III, 124.5 mm or more) have a decreasing trend in all the months and monsoon season over the entire period of study. However, decadal analysis reveals that in general frequency of rainfall events in almost every category is decreasing in recent decade. Different results are seen in August, as cumulative rainfall is decreasing in this month, whereas very heavy and exceptionally heavy rainfall events and their contribution have increased in recent decade as well as over total period.  


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Sign in / Sign up

Export Citation Format

Share Document