scholarly journals Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka

2014 ◽  
Vol 21 (4) ◽  
pp. 901-917 ◽  
Author(s):  
V. Stolbova ◽  
P. Martin ◽  
B. Bookhagen ◽  
N. Marwan ◽  
J. Kurths

Abstract. This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June–September), post-monsoon (October–December), and pre-monsoon (March–May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.

2018 ◽  
Vol 7 (3.7) ◽  
pp. 29
Author(s):  
Fibor J. Tan ◽  
Edgardo Jade R. Rarugal ◽  
Francis Aldrine A. Uy

Flooding is a perennial problem in the Philippines during the monsoon season intensified by the effects of typhoon. On average, there are 20 typhoons that enter the Philippine Area of Responsibility (PAR), and many of these make landfall causing catastrophic aftermath. Extreme rainfall events could lead to flooding in the downstream floodplain and landslide in mountainous terrains. In this study, which is for the case of Calumpang River that drains to the populated and developing region of Batangas City, the focus is on flooding in the floodplain areas. The river was modelled using LiDAR digital elevation model (DEM) that has an accuracy of 20cm in the vertical and 50cm in the horizontal. The result of this is river hydraulic model that can be used to accurately generate flood inundation simulations and flood hazard maps.  


2020 ◽  
Vol 33 (7) ◽  
pp. 2663-2680 ◽  
Author(s):  
Michael D. Sierks ◽  
Julie Kalansky ◽  
Forest Cannon ◽  
F. M. Ralph

AbstractThe North American monsoon (NAM) is the main driver of summertime climate variability in the U.S. Southwest. Previous studies of the NAM have primarily focused on the Tier I region of the North American Monsoon Experiment (NAME), spanning central-western Mexico, southern Arizona, and New Mexico. This study, however, presents a climatological characterization of summertime precipitation, defined as July–September (JAS), in the Lake Mead watershed, located in the NAME Tier II region. Spatiotemporal variability of JAS rainfall is examined from 1981 to 2016 using gridded precipitation data and the meteorological mechanisms that account for this variability are investigated using reanalyses. The importance of the number of wet days (24-h rainfall ≥1 mm) and extreme rainfall events (95th percentile of wet days) to the total JAS precipitation is examined and shows extreme events playing a larger role in the west and central basin. An investigation into the dynamical drivers of extreme rainfall events indicates that anticyclonic Rossby wave breaking (RWB) in the midlatitude westerlies over the U.S. West Coast is associated with 89% of precipitation events >10 mm (98th percentile of wet days) over the Lake Mead basin. This is in contrast to the NAME Tier I region where easterly upper-level disturbances such as inverted troughs are the dominant driver of extreme precipitation. Due to the synoptic nature of RWB events, corresponding impacts and hazards extend beyond the Lake Mead watershed are relevant for the greater U.S. Southwest.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241293
Author(s):  
Semih Sami Akay ◽  
Orkan Özcan ◽  
Füsun Balık Şanlı ◽  
Tolga Görüm ◽  
Ömer Lütfi Şen ◽  
...  

Morphological changes, caused by the erosion and deposition processes due to water discharge and sediment flux occur, in the banks along the river channels and in the estuaries. Flow rate is one of the most important factors that can change river morphology. The geometric shapes of the meanders and the river flow parameters are crucial components in the areas where erosion or deposition occurs in the meandering rivers. Extreme precipitation triggers erosion on the slopes, which causes significant morphological changes in large areas during and after the event. The flow and sediment amount observed in a river basin with extreme precipitation increases and exceeds the long-term average value. Hereby, erosion severity can be determined by performing spatial analyses on remotely sensed imagery acquired before and after an extreme precipitation event. Changes of erosion and deposition along the river channels and overspill channels can be examined by comparing multi-temporal Unmanned Aerial Vehicle (UAV) based Digital Surface Model (DSM) data. In this study, morphological changes in the Büyük Menderes River located in the western Turkey, were monitored with pre-flood (June 2018), during flood (January 2019), and post-flood (September 2019) UAV surveys, and the spatial and volumetric changes of eroded/deposited sediment were quantified. For this purpose, the DSAS (Digital Shoreline Analysis System) method and the DEM of Difference (DoD) method were used to determine the changes on the riverbank and to compare the periodic volumetric morphological changes. Hereby, Structure from Motion (SfM) photogrammetry technique was exploited to a low-cost UAV derived imagery to achieve riverbank, areal and volumetric changes following the extreme rainfall events extracted from the time series of Tropical Rainfall Measuring Mission (TRMM) satellite data. The change analyses were performed to figure out the periodic morphodynamic variations and the impact of the flood on the selected meandering structures. In conclusion, although the river water level increased by 0.4–5.9 meters with the flood occurred in January 2019, the sediment deposition areas reformed after the flood event, as the water level decreased. Two-year monitoring revealed that the sinuosity index (SI) values changed during the flood approached the pre-flood values over time. Moreover, it was observed that the amount of the deposited sediments in September 2019 approached that of June 2018.


2011 ◽  
Vol 8 (2) ◽  
pp. 2057-2092 ◽  
Author(s):  
D. Zona ◽  
I. A. Janssens ◽  
M. S. Verlinden ◽  
L. S. Broeckx ◽  
J. Cools ◽  
...  

Abstract. A large fraction of the West European landscape is used for intensive agriculture. Several of these countries have very high nitrous oxide (N2O) emissions, because of substantial use of fertilizers and high rates of atmospheric nitrogen deposition. N2O production in soils is controlled by water-filled pore space (WFPS) and substrate availability (NO3). Here we show that extreme precipitation (80 mm rainfall in 48 h) after a long dry period, led to a week-long peak in N2O emissions (up to about 2200 μg N2O-N m−2 h−1). In the first four of these peak emission days, N2O fluxes showed a pronounced diurnal pattern correlated to daytime increase in temperature and wind speed. It is possible that N2O was transported through the transpiration stream of the poplar trees and emitted through the stomates. However, during the following three high emission days, N2O emission was fairly stable with no pronounced diurnal trend, and was correlated with wind speed and WFPS (at 20 and 40 cm depth) but no longer with soil temperature. We hypothesized that wind speed facilitated N2O emission from the soil to the atmosphere through a significant pressure-pumping. Successive rainfall events and similar WFPS after this first intense precipitation did not lead to N2O emissions of the same magnitude. These findings suggest that climate change-induced modification in precipitation patterns may lead to high N2O emission pulses from soil, such that sparser and more extreme rainfall events after longer dry periods could lead to peak N2O emissions. The cumulative effects of more variable climate on annual N2O emission are still largely uncertain and need further investigation.


2021 ◽  
Author(s):  
Matias Ezequiel Olmo ◽  
Maria Laura Bettolli

<p>Southern South America (SSA) is a wide populated region exposed to extreme rainfall events, which are recognised as some of the major threats in a warming climate. These events produce large impacts on socio-economic activities, energy demand and health systems. Hence, studying this phenomena requires high-quality and high-resolution observational data and model simulations. In this work, the main features of daily extreme precipitation and circulation types over SSA were evaluated using a 4-model set of CORDEX regional climate models (RCMs) driven by ERA-Interim during 1980-2010: RCA4 and WRF from CORDEX Phase 1 and RegCM4v7 and REMO2015 from the brand-new CORDEX-CORE simulations. Observational uncertainty was assessed by comparing model outputs with multiple observational datasets (rain gauges, CHIRPS, CPC and MSWEP). </p><p>The inter-comparison of extreme events, characterized in terms of their intensity, frequency and spatial coverage, varied across SSA exhibiting large differences among observational datasets and RCMs, pointing out the current observational uncertainty when evaluating precipitation extremes, particularly at a daily scale. The spread between observational datasets was smaller than for the RCMs. Most of the RCMs successfully captured the spatial pattern of extreme rainfall across SSA, reproducing the maximum intensities in southeastern South America (SESA) and central and southern Chile during the austral warm (October to March) and cold (April to September) seasons, respectively. However, they often presented overestimations over central and southern Chile, and more variable results in SESA. RegCM4 and WRF seemed to well represent the maximum precipitation amounts over SESA, while REMO showed strong overestimations and RCA4 had more difficulties in representing the spatial distribution of heavy rainfall intensities. Focusing over SESA, differences were detected in the timing and location of extremes (including the areal coverage) among both observational datasets and RCMs, which poses a particular challenge when performing impact studies in the region. Thus, stressing that the use of multiple datasets is of key importance when carrying out regional climate studies and model evaluations, particularly for extremes. </p><p>The synoptic environment was described by a classification of circulation types (CTs) using Self-Organizing Maps (SOM) considering geopotential height anomalies at 500 hPa (Z500). Specific CTs were identified as they significantly enhanced the occurrence of extreme rainfall events in sectorized areas of SESA. In particular, a dipolar structure of Z500 anomalies that produced a marked trough at the mid-level atmosphere, usually located east of the Andes, significantly favoured the occurrence of extreme precipitation events in the warm season. The RCMs were able to adequately reproduce the SOM frequencies, although simplifying the predominant CTs into a reduced number of configurations. They appropriately reproduced the observed extreme precipitation frequencies conditioned by the CTs and their atmospheric configurations, but exhibiting some limitations in the location and intensity of the resulting precipitation systems.</p><p>In this sense, continuous evaluations of observational datasets and model simulations become necessary for a better understanding of the physical mechanisms behind extreme precipitation over the region, as well as for its past and future changes in a climate change scenario.</p>


2010 ◽  
Vol 11 (4) ◽  
pp. 950-965 ◽  
Author(s):  
Guobin Fu ◽  
Neil R. Viney ◽  
Stephen P. Charles ◽  
Jianrong Liu

Abstract The temporal variability of the frequency of short-duration extreme precipitation events in Australia for the period 1910–2006 is examined using the high-quality rainfall dataset identified by the Bureau of Meteorology, Australia, for 189 stations. Extreme events are defined by duration and recurrence interval: 1, 5, 10, and 30 days, and 1, 5, and 20 yr, respectively. The results indicate that temporal variations of the extreme precipitation index (EPI) for various durations and recurrence intervals in the last 100 yr, except for the low frequencies before 1918, have experienced three U-shaped cycles: 1918–53, 1953–74, and 1974–2006. Seasonal results indicate that about two-thirds of 1-day, 1-yr recurrence interval extreme events occur from December to March. Time series of anomalies of the regional EPIs for four regions indicate that northeast Australia and southeast Australia have almost the same temporal variation as the national anomalies, South Australia experienced a negative anomaly of extreme rainfall events in the mid-1950s, and southwest Western Australia (SWWA) experienced relatively small temporal variation. The relationships between extreme rainfall events and the Southern Oscillation index (SOI) and the interdecadal Pacific oscillation (IPO) indicate that extreme rainfall events in Australia have a strong relationship with both, especially during La Niña years and after 1942.


Sign in / Sign up

Export Citation Format

Share Document