scholarly journals Delineation of musculocontractural Ehlers–Danlos Syndrome caused by dermatan sulfate epimerase deficiency

2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Charlotte K. Lautrup ◽  
Keng W. Teik ◽  
Ai Unzaki ◽  
Shuji Mizumoto ◽  
Delfien Syx ◽  
...  
2015 ◽  
Vol 36 (5) ◽  
pp. 535-547 ◽  
Author(s):  
Delfien Syx ◽  
Tim Van Damme ◽  
Sofie Symoens ◽  
Merel C. Maiburg ◽  
Ingrid van de Laar ◽  
...  

1999 ◽  
Vol 13 (3) ◽  
pp. 202-205 ◽  
Author(s):  
Motoshi Tajima ◽  
Sachiko Miyake ◽  
Kazushige Takehana ◽  
Ataru Kobayashi ◽  
Osamu Yamato ◽  
...  

2017 ◽  
Vol 50 (12) ◽  
pp. 670-677 ◽  
Author(s):  
Shuji Mizumoto ◽  
Tomoki Kosho ◽  
Atsushi Hatamochi ◽  
Tomoko Honda ◽  
Tomomi Yamaguchi ◽  
...  

Glycobiology ◽  
2020 ◽  
Author(s):  
Takuya Hirose ◽  
Shuji Mizumoto ◽  
Ayana Hashimoto ◽  
Yuki Takahashi ◽  
Takahiro Yoshizawa ◽  
...  

Abstract Loss-of-function variants in CHST14 cause a dermatan 4-O-sulfotransferase deficiency named musculocontractural Ehlers–Danlos syndrome-CHST14 (mcEDS-CHST14), resulting in complete depletion of the dermatan sulfate moiety of decorin glycosaminoglycan (GAG) chains, which is replaced by chondroitin sulfate. Recently, we uncovered structural alteration of GAG chains in the skin of patients with mcEDS-CHST14. Here, we conducted the first systematic investigation of Chst14 gene-deleted homozygote (Chst14−/−) mice. We used skin samples of wild-type (Chst14+/+) and Chst14−/− mice. Mechanical fragility of the skin was measured with a tensile test. Pathology was observed using light microscopy, decorin immunohistochemistry and electron microscopy (EM) including cupromeronic blue (CB) staining. Quantification of chondroitin sulfate and dermatan sulfate was performed using enzymatic digestion followed by anion-exchange HPLC. In Chst14−/− mice, skin tensile strength was significantly decreased compared with that in Chst14+/+ mice. EM showed that collagen fibrils were oriented in various directions to form disorganized collagen fibers in the reticular layer. Through EM-based CB staining, rod-shaped linear GAG chains were found to be attached at one end to collagen fibrils and protruded outside of the fibrils, in contrast to them being round and wrapping the collagen fibrils in Chst14+/+ mice. A very low level of dermatan sulfate disaccharides was detected in the skin of Chst14−/− mice by anion-exchange chromatography. Chst14−/− mice, exhibiting similar abnormalities in the GAG structure of decorin and collagen networks in the skin, could be a reasonable model for skin fragility of patients with mcEDS-CHST14, shedding light on the role of dermatan sulfate in maintaining skin strength.


2016 ◽  
Vol 9 (6) ◽  
pp. 607-620 ◽  
Author(s):  
Nadège Gouignard ◽  
Marco Maccarana ◽  
Ina Strate ◽  
Kristoffer von Stedingk ◽  
Anders Malmström ◽  
...  

2013 ◽  
Vol 22 (18) ◽  
pp. 3761-3772 ◽  
Author(s):  
Thomas Müller ◽  
Shuji Mizumoto ◽  
Indrajit Suresh ◽  
Yoshie Komatsu ◽  
Julia Vodopiutz ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuji Mizumoto ◽  
Shuhei Yamada

Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.


Author(s):  
Yuko Nitahara-Kasahara ◽  
Guillermo Posadas-Herrera ◽  
Shuji Mizumoto ◽  
Aki Nakamura-Takahashi ◽  
Yukiko U. Inoue ◽  
...  

Carbohydrate sulfotransferase 14 (CHST14) encodes dermatan 4-O-sulfotransferase 1, a critical enzyme for dermatan sulfate (DS) biosynthesis. Musculocontractural Ehlers-Danlos syndrome (mcEDS) is associated with biallelic pathogenic variants of CHST14 and is characterized by malformations and manifestations related to progressive connective tissue fragility. We identified myopathy phenotypes in Chst14-deficient mice using an mcEDS model. Decorin is a proteoglycan harboring a single glycosaminoglycan chain containing mainly DS, which are replaced with chondroitin sulfate (CS) in mcEDS patients with CHST14 deficiency. We studied the function of decorin in the skeletal muscle of Chst14-deficient mice because decorin is important for collagen-fibril assembly and has a myokine role in promoting muscle growth. Although decorin was present in the muscle perimysium of wild-type (Chst14+/+) mice, decorin was distributed in the muscle perimysium as well as in the endomysium of Chst14–/– mice. Chst14–/– mice had small muscle fibers within the spread interstitium; however, histopathological findings indicated milder myopathy in Chst14–/– mice. Myostatin, a negative regulator of protein synthesis in the muscle, was upregulated in Chst14–/– mice. In the muscle of Chst14–/– mice, decorin was downregulated compared to that in Chst14+/+ mice. Chst14–/– mice showed altered cytokine/chemokine balance and increased fibrosis, suggesting low myogenic activity in DS-deficient muscle. Therefore, DS deficiency in mcEDS causes pathological localization and functional abnormalities of decorin, which causes disturbances in skeletal muscle myogenesis.


Author(s):  
Yuko Nitahara-Kasahara ◽  
Shuji Mizumoto ◽  
Yukiko U. Inoue ◽  
Shota Saka ◽  
Guillermo Posadas-Herrera ◽  
...  

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9-genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild-type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice would be a useful model to further our understanding of the mcEDS pathophysiology and in the development of novel treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document