An inverse problem for an immobilized enzyme model

2019 ◽  
Vol 42 (12) ◽  
pp. 4170-4183
Author(s):  
Diego Gajardo ◽  
Alberto Mercado ◽  
Pedro Valencia
1982 ◽  
Vol 2 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Dexing Feng ◽  
Guangtian Zhu
Keyword(s):  

1978 ◽  
Vol 39 (01) ◽  
pp. 193-200 ◽  
Author(s):  
Erwin F Workman ◽  
Roger L Lundblad

SummaryAn improved method for the preparation of bovine α-thrombin is described. The procedure involves the activation of partially purified prothrombin with tissue thromboplastin followed by chromatography on Sulfopropyl-Sephadex C-50. The purified enzyme is homogeneous on polyacrylamide discontinuous gel electrophoresis and has a specific activity toward fibrinogen of 2,200–2,700 N.I.H. U/mg. Its stability on storage in liquid media is dependent on both ionic strenght and temperature. Increasing ionic strength and decreasing temperature result in optimal stability. The denaturation of α-thrombin by guanidine hydrochloride was found to be a partially reversible process with the renatured species possessing properties similar to “aged” thrombin. In addition, the catalytic properties of a-thrombin covalently attached to agarose gel beads were also examined. The activity of the immobilized enzyme toward fibrinogen was affected to a much greater extent than was the hydrolysis of low molecular weight, synthetic substrates.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document