A linearization‐based approach of homotopy analysis method for non‐linear time‐fractional parabolic PDEs

2019 ◽  
Vol 42 (18) ◽  
pp. 7222-7232 ◽  
Author(s):  
Zaid Odibat ◽  
Dumitru Baleanu
2019 ◽  
Vol 8 (2S11) ◽  
pp. 3584-3588

In the present investigation a two species commensalism model was taken up for detailed analytical study in which commensal species was harvested at a rate proportional to its strength. The system under investigation was represented by a coupled non linear ordinary differential equations. The series solution of the non-linear system was approximated by Homotopy Analysis Method.


2012 ◽  
Vol 09 (03) ◽  
pp. 1250039 ◽  
Author(s):  
S. S. MOTSA

In this work, we demonstrate the efficiency of the newly developed spectral homotopy analysis method (SHAM) in solving non-linear heat transfer equations. We demonstrate the applicability of the method by solving the problem of steady conduction in a slab and the convective fin equation with variable thermal conductivity. New closed form explicit analytic solutions of the governing non-linear equations are obtained and compared with the SHAM results and numerical solutions. The results reveal that the new SHAM approach is very accurate and efficient and converges much faster than the standard homotopy analysis method.


Author(s):  
Abdelkader Khentout ◽  
Mohamed Kezzar ◽  
Mohamed R. Sari ◽  
Tabet Ismail ◽  
Mustapha S. Tich Tich ◽  
...  

Abstract In this research work, we introduce the influences of the shape of nanoparticles and joule heating in the hydromagnetic flow of hybrid nanofluids between non-parallel plates. A mixture base fluid (H2O (50%)-C2H6O2 (50%)), a hybrid nanofluid containing hybrid nanoparticles (graphene oxide-molybdenum disulfide, GO-MoS2) as nanoparticles, is considered. The non-linear governing equations are reduced into ordinary-differential equations (ODEs) by similarity transformations. The non-linear ordinary-differential equation (ODE) is solved numerically utilizing 4th–5th order Runge-Kutta-Fehlberg (RKF-45) with a shooting method and analytically using the homotopy analysis method (HAM). The effect of the rarefaction parameter, Reynolds number, channel angle, Hartmann number, electric field parameter, and the shape of nanoparticles on fluid velocity and skin friction are discussed and presented in a graphical form. Also, the theoretical results and the effectiveness of the homotopy analysis method (HAM) are confirmed by numerical tests and presented graphically coupled with detailed discussions.


Open Physics ◽  
2009 ◽  
Vol 7 (1) ◽  
Author(s):  
Saeed Dinarvand

AbstractThe similarity solution for the steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field gives a system of non-linear ordinary differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the Homotopy Analysis Method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the Schmidt number, magnetic parameter and chemical reaction parameter on the velocity and concentration fields. It is noted that the behavior of the HAM solution for concentration profiles is in good agreement with the numerical solution given in reference [A. Raptis, C. Perdikis, Int. J. Nonlinear Mech. 41, 527 (2006)].


Sign in / Sign up

Export Citation Format

Share Document