scholarly journals Existence of multiple positive solutions for singular p-q-Laplacian problems with critical nonlinearities

Author(s):  
Wang Jiayu ◽  
Wei Han

In this article, we consider the following p-q-Laplacian system with singular and critical nonlinearity \begin{equation*} \left \{ \begin{array}{lllll} -\Delta_{p}u-\Delta_{q}u=\frac{h_{1}(x)}{u^{r}}+\lambda\frac{\alpha}{\alpha+\beta}u^{\alpha-1}v^{\beta} \ \ in\ \Omega ,\\ -\Delta_{p}v-\Delta_{q}v=\frac{h_{2}(x)}{v^{r}}+\lambda\frac{\beta}{\alpha+\beta}u^{\alpha}v^{\beta-1} \ \ in\ \Omega, \\ u,v>0 \ \ \ \ \ \ in \ \Omega, \ \ \ \ \ u=v=0 \ \ \ \ \ \ \ on \ \partial\Omega, \end{array} \right. \end{equation*} where Ω is a bounded domain in $\mathbb {R}^{n}$ with smooth boundary $\partial\Omega$. $11,\lambda\in(0,\Lambda_{*})$ is parameter with $\Lambda _{*}$ is a positive constant and $h_{1}(x),h_{2}(x)\in L^{\infty},h_{1}(x),h_{2}(x)>0$. We show the existence and multiplicity of weak solution of equation above for suitable range of $\lambda$.

Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2016 ◽  
Vol 8 (1) ◽  
pp. 52-72 ◽  
Author(s):  
Tuhina Mukherjee ◽  
Konijeti Sreenadh

Abstract In this article, we study the following fractional p-Laplacian equation with critical growth and singular non-linearity: (-\Delta_{p})^{s}u=\lambda u^{-q}+u^{\alpha},\quad u>0\quad\text{in }\Omega,% \qquad u=0\quad\text{in }\mathbb{R}^{n}\setminus\Omega, where Ω is a bounded domain in {\mathbb{R}^{n}} with smooth boundary {\partial\Omega} , {n>sp} , {s\in(0,1)} , {\lambda>0} , {0<q\leq 1} and {1<p<\alpha+1\leq p^{*}_{s}} . We use variational methods to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter λ.


2017 ◽  
Vol 6 (3) ◽  
pp. 327-354 ◽  
Author(s):  
Jacques Giacomoni ◽  
Tuhina Mukherjee ◽  
Konijeti Sreenadh

AbstractIn this article, we study the following fractional elliptic equation with critical growth and singular nonlinearity:(-\Delta)^{s}u=u^{-q}+\lambda u^{{2^{*}_{s}}-1},\qquad u>0\quad\text{in }% \Omega,\qquad u=0\quad\text{in }\mathbb{R}^{n}\setminus\Omega,where Ω is a bounded domain in {\mathbb{R}^{n}} with smooth boundary {\partial\Omega}, {n>2s}, {s\in(0,1)}, {\lambda>0}, {q>0} and {2^{*}_{s}=\frac{2n}{n-2s}}. We use variational methods to show the existence and multiplicity of positive solutions with respect to the parameter λ.


2017 ◽  
Vol 20 (02) ◽  
pp. 1650067 ◽  
Author(s):  
S. Prashanth ◽  
Sweta Tiwari ◽  
K. Sreenadh

In this paper, we consider the following singular elliptic problem involving an exponential nonlinearity in two dimensions: [Formula: see text] [Formula: see text] where [Formula: see text] is a bounded domain with smooth boundary, [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. We show the existence and multiplicity of positive solutions globally with respect to the bifurcation parameter [Formula: see text].


2017 ◽  
Vol 17 (4) ◽  
pp. 661-676 ◽  
Author(s):  
Xiao-Jing Zhong ◽  
Chun-Lei Tang

AbstractIn this paper, we investigate a class of Kirchhoff type problems in {\mathbb{R}^{3}} involving a critical nonlinearity, namely,-\biggl{(}1+b\int_{\mathbb{R}^{3}}\lvert\nabla u|^{2}\,dx\biggr{)}\triangle u=% \lambda f(x)u+|u|^{4}u,\quad u\in D^{1,2}(\mathbb{R}^{3}),where {b>0}, {\lambda>\lambda_{1}} and {\lambda_{1}} is the principal eigenvalue of {-\triangle u=\lambda f(x)u}, {u\in D^{1,2}(\mathbb{R}^{3})}. We prove that there exists {\delta>0} such that the above problem has at least two positive solutions for {\lambda_{1}<\lambda<\lambda_{1}+\delta}. Furthermore, we obtain the existence of ground state solutions. Our tools are the Nehari manifold and the concentration compactness principle. This paper can be regarded as an extension of Naimen’s work [21].


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 749-759 ◽  
Author(s):  
Şerife Ege ◽  
Fatma Topal

In this paper, we study the existence and multiplicity of positive solutions to the four-point boundary value problems of nonlinear semipositone fractional differential equations. Our results extend some recent works in the literature.


2018 ◽  
Vol 36 (4) ◽  
pp. 197-208
Author(s):  
Khaled Ben Ali ◽  
Abdeljabbar Ghanmi

This article shows the existence and multiplicity of positive solutions of the $p$-Laplacien problem $$\displaystyle -\Delta_{p} u=\frac{1}{p^{\ast}}\frac{\partial F(x,u)}{\partial u} + \lambda a(x)|u|^{q-2}u \quad \mbox{for } x\in\Omega;\quad \quad u=0,\quad \mbox{for } x\in\partial\Omega$$ where $\Omega$ is a bounded open set in $\mathbb{R}^n$ with smooth boundary, $1<q<p<n$, $p^{\ast}=\frac{np}{n-p}$, $\lambda \in \mathbb{R}\backslash \{0\}$ and $a$ is a smooth function which may change sign in $\overline{\Omega}$. The method is based on Nehari results on three sub-manifolds of the space $W_{0}^{1,p}$.


2018 ◽  
Vol 20 (06) ◽  
pp. 1750063 ◽  
Author(s):  
Haidong Liu ◽  
Zhaoli Liu

In this paper, existence and multiplicity of positive solutions of the elliptic system [Formula: see text] is proved, where [Formula: see text] is an exterior domain in [Formula: see text] such that [Formula: see text] is far away from the origin and contains a sufficiently large ball, [Formula: see text], and the coefficients [Formula: see text] are continuous functions on [Formula: see text] which tend to positive constants at infinity. We do not assume [Formula: see text] to be positive functions.


Sign in / Sign up

Export Citation Format

Share Document