Multiple Positive Solutions for a Fractional Laplacian System with Critical Nonlinearities

2016 ◽  
Vol 41 (4) ◽  
pp. 1879-1905
Author(s):  
Qin Li ◽  
Zuodong Yang
2020 ◽  
Vol 23 (3) ◽  
pp. 837-860 ◽  
Author(s):  
Adel Daoues ◽  
Amani Hammami ◽  
Kamel Saoudi

AbstractIn this paper we investigate the following nonlocal problem with singular term and critical Hardy-Sobolev exponent$$\begin{array}{} ({\rm P}) \left\{ \begin{array}{ll} (-\Delta)^s u = \displaystyle{\frac{\lambda}{u^\gamma}+\frac{|u|^{2_\alpha^*-2}u}{|x|^\alpha}} \ \ \text{ in } \ \ \Omega, \\ u >0 \ \ \text{ in } \ \ \Omega, \quad u = 0 \ \ \text{ in } \ \ \mathbb{R}^{N}\setminus \Omega, \end{array} \right. \end{array}$$where Ω ⊂ ℝN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < α < 2s < N, 0 < γ < 1 < 2 < $\begin{array}{} \displaystyle 2_s^* \end{array}$, where $\begin{array}{} \displaystyle 2_s^* = \frac{2N}{N-2s} ~\text{and}~ 2_\alpha^* = \frac{2(N-\alpha)}{N-2s} \end{array}$ are the fractional critical Sobolev and Hardy Sobolev exponents respectively. The fractional Laplacian (–Δ)s with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by$$\begin{array}{} \displaystyle (-\Delta)^s u(x)=-\frac{1}{2} \displaystyle\int_{\mathbb{R}^N} \frac{u(x+y)+u(x-y)-2u(x)}{|y|^{N+2s}}{\rm d }y, \;\; \text{ for all }\, x \in \mathbb{R}^N. \end{array}$$By combining variational and approximation methods, we provide the existence of two positive solutions to the problem (P).


Author(s):  
Wang Jiayu ◽  
Wei Han

In this article, we consider the following p-q-Laplacian system with singular and critical nonlinearity \begin{equation*} \left \{ \begin{array}{lllll} -\Delta_{p}u-\Delta_{q}u=\frac{h_{1}(x)}{u^{r}}+\lambda\frac{\alpha}{\alpha+\beta}u^{\alpha-1}v^{\beta} \ \ in\ \Omega ,\\ -\Delta_{p}v-\Delta_{q}v=\frac{h_{2}(x)}{v^{r}}+\lambda\frac{\beta}{\alpha+\beta}u^{\alpha}v^{\beta-1} \ \ in\ \Omega, \\ u,v>0 \ \ \ \ \ \ in \ \Omega, \ \ \ \ \ u=v=0 \ \ \ \ \ \ \ on \ \partial\Omega, \end{array} \right. \end{equation*} where Ω is a bounded domain in $\mathbb {R}^{n}$ with smooth boundary $\partial\Omega$. $11,\lambda\in(0,\Lambda_{*})$ is parameter with $\Lambda _{*}$ is a positive constant and $h_{1}(x),h_{2}(x)\in L^{\infty},h_{1}(x),h_{2}(x)>0$. We show the existence and multiplicity of weak solution of equation above for suitable range of $\lambda$.


2021 ◽  
Vol 11 (1) ◽  
pp. 432-453
Author(s):  
Qi Han

Abstract In this work, we study the existence of a positive solution to an elliptic equation involving the fractional Laplacian (−Δ) s in ℝ n , for n ≥ 2, such as (0.1) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = K ( x ) f ( u ) + u 2 s ⋆ − 1 . $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=K(x) f(u)+u^{2_{s}^{\star}-1}.$$ Here, s ∈ (0, 1), q ∈ 2 , 2 s ⋆ $q \in\left[2,2_{s}^{\star}\right)$ with 2 s ⋆ := 2 n n − 2 s $2_{s}^{\star}:=\frac{2 n}{n-2 s}$ being the fractional critical Sobolev exponent, E(x), K(x), V(x) > 0 : ℝ n → ℝ are measurable functions which satisfy joint “vanishing at infinity” conditions in a measure-theoretic sense, and f (u) is a continuous function on ℝ of quasi-critical, super-q-linear growth with f (u) ≥ 0 if u ≥ 0. Besides, we study the existence of multiple positive solutions to an elliptic equation in ℝ n such as (0.2) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = λ K ( x ) u r − 1 , $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=\lambda K(x) u^{r-1},$$ where 2 < r < q < ∞(both possibly (super-)critical), E(x), K(x), V(x) > 0 : ℝ n → ℝ are measurable functions satisfying joint integrability conditions, and λ > 0 is a parameter. To study (0.1)-(0.2), we first describe a family of general fractional Sobolev-Slobodeckij spaces Ms ;q,p (ℝ n ) as well as their associated compact embedding results.


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


Sign in / Sign up

Export Citation Format

Share Document