A broadband antenna using the modified ground plane with a complementary split ring resonator for 5-GHz WLAN band-notched performance

2011 ◽  
Vol 54 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Jangyeol Kim ◽  
Nam Kim ◽  
Seungwoo Lee
2015 ◽  
Vol 8 (7) ◽  
pp. 1045-1050 ◽  
Author(s):  
Indhumathi Kulandhaisamy ◽  
Dinesh Babu Rajendran ◽  
Malathi Kanagasabai ◽  
Balaji Moorthy ◽  
Jithila V. George ◽  
...  

Phase shifters are indispensable microwave components. In this paper, a dual-frequency, passive, analog, and reciprocal phase shifter is proposed, deploying the phase-delay characteristics of complementary split-ring resonator (CSRR). A transmission line is loaded with a pair of CSRR in the ground plane and the phase variations are compared with an ideal transmission line. The proposed phase shifter operates in the industrial, scientific and medical (ISM) and wireless local area network (WLAN) bands, providing a phase of 180° at 2.4 GHz and 90° at 5.4 GHz for beam steering applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Mehrab Ramzan ◽  
Kagan Topalli

This paper presents a design methodology for the implementation of a miniaturized square patch antenna and its circuit model for 5.15 GHz ISM band. The miniaturization is achieved by employing concentric complementary split ring resonator (CSRR) structures in between the patch and ground plane. The results are compared with the traditional square patch antenna in terms of area, bandwidth, and efficiency. The area is reduced with a ratio of 1/4 with respect to the traditional patch. The miniaturized square patch antenna has an efficiency, bandwidth, and reflection coefficient of 78%, 0.4%, and −16 dB, respectively. The measurement and circuit modeling results show a good agreement with the full-wave electromagnetic simulations.


2017 ◽  
Vol 24 (4) ◽  
pp. 573-580 ◽  
Author(s):  
Sikder Sunbeam Islam ◽  
Touhidul Alam ◽  
Mohammad Rashed Iqbal Faruque ◽  
Mohammad Tariqul Islam

AbstractIn this article, a compact complementary split ring resonator (CSRR) based double-negative (DNG) metamaterial antenna is presented for wideband (4.49 GHz–21.85 GHz) wireless application. The antenna is incorporated with a DNG metamaterial patch: 50Ω microstrip feed line and partial ground plane. The antenna shows measured fractional bandwidth of 131.81% with a compact size of 0.37λ×0.37λ×0.01λ. The commercially available finite integration technique (FIT)-based simulation software, computer simulation technology (CST) microwave studio was adopted to investigate the performance of the proposed antenna. Several parametric studies were performed to investigate the effect of key structural parameters on antenna performances. The double-negative characteristics of the metamaterial were investigated as well.


Sign in / Sign up

Export Citation Format

Share Document