scholarly journals Effective dielectric constant of top grounded coplanar waveguide on liquid crystal superstrate

2013 ◽  
Vol 55 (6) ◽  
pp. 1416-1418 ◽  
Author(s):  
Senad Bulja ◽  
Dariush Mirshekar‐Syahkal ◽  
Richard James ◽  
Sally E. Day ◽  
F.Aníbal Fernández

Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 81
Author(s):  
Hassanein Shaban ◽  
Shih-Chun Yen ◽  
Mon-Juan Lee ◽  
Wei Lee

An optical and dielectric biosensor based on a liquid crystal (LC)–photopolymer composite was established in this study for the detection and quantitation of bovine serum albumin (BSA). When the nematic LC E7 was doped with 4-wt.% NOA65, a photo-curable prepolymer, and photopolymerized by UV irradiation at 20 mW/cm2 for 300 s, the limit of detection determined by image analysis of the LC optical texture and dielectric spectroscopic measurements was 3400 and 88 pg/mL for BSA, respectively, which were lower than those detected with E7 alone (10 μg/mL BSA). The photopolymerized NOA65, but not the prepolymer prior to UV exposure, contributed to the enhanced optical signal, and UV irradiation of pristine E7 in the absence of NOA65 had no effect on the optical texture. The effective tilt angle θ, calculated from the real-part dielectric constant ε’, decreased with increasing BSA concentration, providing strong evidence for the correlation of photopolymerized NOA65 to the intensified disruption in the vertically oriented LC molecules to enhance the optical and dielectric signals of BSA. The optical and dielectric anisotropy of LCs and the photo-curable dopant facilitate novel quantitative and signal amplification approaches to potential development of LC-based biosensors.



Author(s):  
Aakashdeep ◽  
Saurav Kr. Basu ◽  
G. V. Ujjwal ◽  
Sakshi Kumari ◽  
V. R. Gupta


1992 ◽  
Vol 258 ◽  
Author(s):  
Z. Jing ◽  
J. L. Whitten ◽  
G. Lucovsky

ABSTRACTWe have performed ab initio calculations and determined the bond-energies and vibrational frequencies of Si-H groups that are: i) attached to Si-atoms as their immediate, and also more distant neighbors; and ii) attached to three O-atoms as their immediate neighbors, but are connected to an all Si-atom matrix. These arrangements simulate bonding geometries on Si surfaces, and the calculated frequency for i) is in good agreement with that of an Si-H group on an Si surface. To compare these results with a-Si:H alloys it is necessary to take into account an additional factor: the effective dielectric constant of the host. We show how to do this, demonstrating the way results of the ab initio calculations should then be compared with experimental data.



2014 ◽  
Vol 04 (04) ◽  
pp. 1450035 ◽  
Author(s):  
Lin Zhang ◽  
Patrick Bass ◽  
Zhi-Min Dang ◽  
Z.-Y. Cheng

The equation ε eff ∝ (ϕc - ϕ)-s which shows the relationship between effective dielectric constant (εeff) and the filler concentration (φ), is widely used to determine the percolation behavior and obtain parameters, such as percolation threshold φc and the power constant s in conductor–dielectric composites (CDCs). Six different systems of CDCs were used to check the expression by fitting experimental results. It is found that the equation can fit the experimental results at any frequency. However, it is found that the fitting constants do not reflect the real percolation behavior of the composites. It is found that the dielectric constant is strongly dependent on the frequency, which is mainly due to the fact that the frequency dependence of the dielectric constant for the composites close to φc is almost independent of the matrix.



2021 ◽  
Vol 22 (9) ◽  
pp. 1270-1276
Author(s):  
Xingye Fan ◽  
Ruozhou Li ◽  
Jing Yan ◽  
Yuming Fang ◽  
Ying Yu


Sign in / Sign up

Export Citation Format

Share Document